Category: wearable technology

Scientists Created a New Organic Material That Generates Electricity When Stressed

Stressed Material

We all get stressed out. But typically, when we stress, we don’t produce electricity. The same can’t be said of a flexible new material developed by researchers from Empa, the Swiss Federal Laboratories for Materials Science and Technology. They’ve created a thin, flexible, rubbery material that generates electricity when stretched and compressed, giving it applications ranging from pacemakers to clothing.

The material is possible thanks to the piezoelectric effect. This effect is most famously seen in analog record players, which play music by reading the record’s grooves with a needle that mechanically vibrates.  Through the piezoelectric effect, these vibrations are, converted into electrical impulses which generate sound waves. That conversion of mechanical movement into electrical energy is also what’s happening within the material Empa researchers created.

Piezoelectric rubber sample. Image Credit: Swiss Federal Laboratories for Materials Science and Technology
Piezoelectric rubber sample. Image Credit: Swiss Federal Laboratories for Materials Science and Technology

Dorina Opris and her colleagues at Empa didn’t just create an incredible material: they’ve pushed the boundaries of what we know about the piezoelectric effect. Before, it was only observed in crystals, but Opris and her team proved that these properties can also exist in elastic materials.

Unfortunately, this exciting new material is not easy to produce. Polar nanoparticles and silicone must be laboriously shaped before they are connected. Then, a strong electric field is introduced into the thin, elastic film to create the piezoelectric effect, which is achieved by exposing the material to extremely hot,  then cool, temperatures.

An Electric Film

This material is undoubtedly interesting. But beyond its novelty, it could have an incredible number of unique applications. Because of its thin, flexible, organic nature, it could work much more seamlessly with the human body than chunky electronics.

Due to this, it’s being considered for use in pressure sensors, pacemakers, and other medical devices. The film could also be used in clothing, control buttons, or even wearable monitors that generate electricity from the wearer’s movement.

Renewable Energy Sources Of The Future [Infographic]
Click to View Full Infographic

Opris expanded on the material’s potential applications, saying “This material could probably even be used to obtain energy from the human body,” she said in an interview for a press release. “You could implant it near the heart to generate electricity from the heartbeat, for instance.”

It is clear that such a unique material could one day prove to be life-saving for humans. As we grow ever-more dependent on electronic devices — some even arguing that we will ultimately become cyborgs — it will be essential that electronics develop to be more in-tune with us.

As such, an organic, rubber material that generates electricity from mechanical stress and movement could be so revolutionary. It combines the unique properties of the piezoelectric effect with the convenience of comfortable, wearable electronics. Who knew stress could be so advantageous?

The post Scientists Created a New Organic Material That Generates Electricity When Stressed appeared first on Futurism.

Researchers Develop Bendable Batteries That Could Make Implants and Wearables Safer

Flexible and Safe

Leaking batteries can corrode the interiors of electronics, sometimes causing irreparable damage. Even worse, they can harm people, and given the increasing prevalence of wearable technology and implantable devices, such a hazard is troublesome.

To avoid this issue altogether, researchers from China’s Fudan University have developed a new kind of battery that doesn’t include the chemicals that can make traditional batteries dangerous. As a bonus, their designs are also thin and flexible.

“Current batteries like the lithium-ion ones used in medical implants generally come in rigid shapes,” Yonggang Wang, one of the researchers from Fudan, said in a press release. “Additionally, most of the reported flexible batteries are based on flammable organic or corrosive electrolytes, which suffer from safety hazards and poor biocompatibility for wearable devices, let alone implantable ones.”

implantable battery wearable technology implants flexible battery
Image credit: Zhaowei Guo, et. al.

In a study recently published in Chem, the researchers present their two flexible design alternatives, neither of which requires the electrolytes used in current batteries. Instead, these batteries use one of two bio-compatible sodium-based liquids: a normal saline solution or a cell culture medium that contains amino acids, sugars, and vitamins.

The first design is a “2D” belt made of thin electrode films over a steel strand mesh. The other features a carbon nanotube fiber weave with nanoparticle electrodes embedded on it. According to the researchers, both designs “showed excellent performance,” even faring better than most existing lithium-ion batteries used in wearable electronics in terms of how much energy they could hold and the power they could produce.

Designed for Implants and More?

The thinness and flexibility of these batteries make them ideal for implants, the researchers noted, and they could be hugely beneficial to the development of brain-computer interfaces, which are, obviously, implanted into one of the most sensitive organs inside the human body.

The Evolution of Brain-Computer Interfaces [INFOGRAPHIC]
Click to View Full Infographic

The researchers also stumbled upon an unexpected potential use for their second battery design. The battery’s carbon nanotube backbone caused the conversion of dissolved oxygen into hydroxide ions to accelerate. This isn’t good for the battery itself, the researchers said, but it could prove beneficial for cancer starvation therapy.

“We can implant these fiber-shaped electrodes into the human body to consume essential oxygen, especially for areas that are difficult for injectable drugs to reach,” Wang explained in the press release. “Deoxygenation might even wipe out cancerous cells or pathogenic bacteria since they are very sensitive to changes in living environment pH.”

Of course, as this wasn’t the object of the research, much more in-depth studies would be required to validate this effect. Until then, it remains largely theoretical.

The batteries themselves, though, show a great deal of promise for their intended use. The next step is to make sure they would be able to meet the power needs of today’s wearables and implants, as well as those that are still to come.

The post Researchers Develop Bendable Batteries That Could Make Implants and Wearables Safer appeared first on Futurism.