Category: quantum mechanics

New Breakthrough Allows Machines to Literally Predict the Behavior of Molecules

Simplifying the Complex

Though much noise has been made of what’s still to come from artificial intelligence (AI), the technology has already changed our daily lives. Machine learning-powered image recognition, text analysis, and language translation tools allow us to navigate the world in previously unimagined ways, and our mobile devices can now predict so much of our behavior based on our past actions.

Now, an international, interdisciplinary team of researchers has devised a way to use machine learning to do something far more complex than foresee a smartphone user’s next move. They’ve built a machine that can predict molecular behavior, a feat that previously required very complex quantum calculations. Their study has been published in Nature Communications.

 

To create this system that can predict molecular behavior, the researchers trained an algorithm using a small sample set featuring a simple molecule called malonaldehyde. Then, they had the machine predict the complex chemical behaviors of this molecule. The researchers compared those predicted simulations with their current chemical understanding of malonaldehyde and found that the machine was able to learn how the molecule would behave using the limited data it had been trained on.

“By identifying patterns in molecular behavior, the learning algorithm or ‘machine’ we created builds a knowledge base about atomic interactions within a molecule and then draws on that information to predict new phenomena,” researcher Mark Tuckerman of New York University explained in a press release.

Data-Driven Models

This work is yet another example of AI’s ability to impact a wide variety of industries, with molecular science joining everything from medical research to psychology and behavioral science. The research demonstrates how machine learning methods can be used to perform difficult tasks of all types so long as the systems are given sufficient data.

Understanding Machine Learning [INFOGRAPHIC]
Click to View Full Infographic

The researchers expect that this ability to predict molecular behavior could greatly contribute to the development of pharmaceuticals, as well as simulate molecular designs crucial for improving the performance of today’s new battery technologies, solar cells, and digital displays — basically, anything that used to rely on complex quantum mechanical calculations to model atomic or molecular interactions can benefit from their work.

While their machine does make it possible to model this behavior without involving intricate calculations, streamlining that complicated task is just the jumping-off point, according to Müller: “Now we have reached the ability to not only use AI to learn from data, but we can probe the AI model to further our scientific understanding and gain new insights.”

The post New Breakthrough Allows Machines to Literally Predict the Behavior of Molecules appeared first on Futurism.

Quantum “Flashes” Could Be Responsible for the Creation of Gravity

Quantum Leap

Since the mid-twentieth century, two theories of physics have offered powerful yet incompatible models of the physical universe. General relativity brings space and time together into the (then) portmanteau space-time, the curvature of which is gravity. It works really well on large scales, such as interplanetary or interstellar space.

The Evolution of Human Understanding of the Universe [INFOGRAPHIC]
Click to View Full Infographic

But zoom into the subatomic, and things get weird. The mere act of observing interactions changes the behavior of what is (presumably) totally independent of observation. In those situations, we need quantum theory to help us make sense of it all.

Though scientists have made some remarkable attempts to bring these estranged theories together, viz., string theory, the math behind the theories remains incompatible. However, new research from Antoine Tilloy of the Max Planck Institute of Quantum Optics in Garching, Germany, suggests that gravity might be an attribute of random fluctuations on the quantum level, which would supplant gravity as the more fundamental theory and put us on the path to a unified theory of the physical universe.

Tilloy’s Model

In quantum theory, a particle’s state is described by its wave function. This function allows theorists to predict the probability that a particle will be in this or that place. However, before the act of verification is made via measurement, no one knows for sure where the particle will be, or if it even exists. In scientific terms, the act of observation “collapses” the wave function.

Here’s the thing about quantum mechanics: it doesn’t define what a measurement is. Who — or what — is an observer? A conscious human? Bracketing all explanations to observed phenomena, we’re stuck with paradoxes like Schrödinger’s cat, which invites us to consider the equal possibilities that a previously boxed cat is, as far as we know, simultaneously dead and alive in the box, and will remain as such until we lift the lid.

One attempt to solve the paradox is the Ghirardi–Rimini–Weber (GRW) model from the late eighties. It incorporates random “flashes” that can cause the wave functions in quantum systems to spontaneously collapse. This purports to leave the outcome unbesmirched by meddling human observation.

Tilloy meddled with this model to extend quantum theory to encompass gravity. When a flash collapses a wave function, and the particle reaches its final position, a gravitational field pops into existence at that precise moment in space-time. On a large enough scale, quantum systems have many particles going through innumerable flashes.

According to Tilloy’s theory, this creates a fluctuating gravitational field, and the gravitational field produced by the average of these fluctuations is compatible with Newton’s theory of gravity. If gravity comes from quantum processes, but nevertheless behaves in a classical (or Newtonian) way, what we have is a “semiclassical” theory.

However, Klaus Hornberger of the University of Duisberg-Essen in Germany cautions the scientific world that other problems must be tackled before Tilloy’s semiclassical solution can warrant serious consideration as a unifying theory of fundamental forces underlying all modern physical laws. It fits Newton’s theory of gravity, but Tilloy’s yet to work out the math to show that the quantum theory also describes gravity under Einstein’s theory of general relativity.

With the greatest explanatory power, physics is one of the most exciting scientific disciplines. But the key to unified theories in physics is patience. As with Schrödinger’s cat, the will-to-know alone cannot fill in the gaps of what we simply don’t yet know.

The post Quantum “Flashes” Could Be Responsible for the Creation of Gravity appeared first on Futurism.

Quantum Weirdness Has Been Tested Beyond The Particle Scale For The First Time

Test the Limits

A small tweak on a definitive experiment in quantum physics has allowed scientists to observe for the first time exactly how molecules behave as waves.

The results are solidly in line with what theory covering complex quantum phenomena predicts, so don’t expect any radical new physics here. But as with most quantum experiments, the implications of seeing such a counter-intuitive theory in action makes our head spin.

Image Source: Group for Quantum Nanophysics, Faculty of Physics, University of Vienna; Image-Design: Christian Knobloch

Researchers from the Universities of Vienna and Tel Aviv have recently collaborated on turning a two-decade old idea into a reality, replacing tiny particles with large organic molecules in a variation on Clinton Davisson and Lester Germer’s classic 1927 double slit experiment in order to test the limits of a law governing their behaviour.

“The idea has been known for more than twenty years,” says researcher Christian Brand from the Vienna Centre for Quantum Science and Technology at the University of Vienna.

“But only now do we have the technological means to bring all the components together and build an experiment capable of testing it with massive molecules.”

To understand the significance, it helps to go back to the beginning.

For the first quarter of the 20th century, scientists were wrestling with what seemed like two completely different Universes of physical laws.

One was the Universe of Newton, where falling apples and shooting stars behaved in similar ways, only differing in terms of scale.

The second was born when Albert Einstein suggested that the mathematics being invented to explain how light was absorbed and emitted wasn’t just a convenient way to crunch the numbers – light really was made up of discrete bits called quanta.

Enter stage left, Prince Louis de Broglie.

Because the idea of light being made of tiny shooting balls wasn’t messed up enough, this intrepid French physicist decided one way to make sense of the latest models of the atom was to describe electrons – those little spheres whizzing around a nucleus – as waves as well.

Famous names such as Werner Heisenberg and Erwin Schrödinger subsequently found different ways to predict how an atom’s structure should behave, but one pictured electrons as continuous waves and the other as discrete bits of stuff.

The mad thing was, both theories were solid. By the same token, a thing couldn’t be a wave and a ball at the same time, could it?

American physicists Clinton Davisson and Lester Germer then took inspiration from an even earlier experiment that had demonstrated light was a wave.

Their version showed that a beam of electrons passing through a pair of closely-aligned parallel slits could produce a wave-like pattern of behaviour similar to light, backing up de Broglie’s hypothesis. Case closed.

Double Slit Experiment

Except ever since then, various versions of this double slit experiment have continued to mess with our minds, showing small objects like electrons and photons can behave as both particles and waves, depending on how we measure them.

Worse still, it’s not just a matter of the very tiny. In 2012, a new record was set in showing a molecule a whopping 800 atoms in size also has wave-like properties.

This latest experiment hasn’t smashed any records, but the researchers still used massive free-floating particles that weighed 515 atomic mass units, or roughly 42 carbon atoms in size. Not exactly tiny, and not easy to manage.

Their goal was to put some limits on the wave-like nature of big things like molecules by passing them through different numbers of slots.

It’s tempting to picture those waves as bunches of spheres jittering up and down like fleas on a hotplate.

Instead, an object such as an electron, a photon, a molecule, or (just to blow your mind) your grandmother, can be thought of as a blend of properties called a superposition that have different states at once.

The probabilities of those states, each describing its position and energy in time and space, is what we call waves. Seriously, stop trying to imagine it in a classical, physical sense, you’ll get a nose bleed.

For tiny particles, this probability can be inferred from measurements plugged into something called Born’s law.

More complex systems, such as molecules (and presumably grandmothers), demand extensions to this formula.

A little over 20 years ago a physicist named Rafael Sorkin determined you only needed the measurements from just two paths – such as those taken through dual slits – for certain extensions to Born’s law to still work. Adding a third, fourth, or hundredth should make no difference.

Thanks to the results of this experiment, we can sleep easier at night knowing Sorkin’s ‘two pathway’ limit stands for molecule-sized particles.

“This is the first time an explicit test of this kind has been conducted with massive particles”, says researcher Joseph Cotter the University of Vienna.

“Previous tests have pushed the frontiers with single photons and microwaves. In our experiment, we put bounds on higher-order interference of massive objects.”

While this is all well and good for physics, it’s also one more piece of evidence that shows quantum mechanic weirdness, such as existing as both particles and waves, isn’t just something that happens to unimaginably small things.

No wonder our head feels fuzzy.

This research was published in Science Advances.

The post Quantum Weirdness Has Been Tested Beyond The Particle Scale For The First Time appeared first on Futurism.

Scientists Observe Gravitational Anomaly on Earth

Modern Physics

Modern physics has accustomed us to strange and counterintuitive notions of reality—especially quantum physics which is famous for leaving physical objects in strange states of superposition. For example, Schrödinger’s cat, who finds itself unable to decide if it is dead or alive. Sometimes however quantum mechanics is more decisive and even destructive.

Scientists Observe Gravitational Anomaly on Earth
Prof. Dr. Karl Landsteiner, a string theorist at the Instituto de Fisica Teorica UAM/CSIC and co-author of the paper made this graphic to explain the gravitational anomaly. Image Source: IBM Research

Symmetries are the holy grail for physicists. Symmetry means that one can transform an object in a certain way that leaves it invariant. For example, a round ball can be rotated by an arbitrary angle, but always looks the same. Physicists say it is symmetric under rotations. Once the symmetry of a physical system is identified it’s often possible to predict its dynamics.

Sometimes however the laws of  mechanics destroy a symmetry that would happily exist in a world without , i.e classical systems. Even to physicists this looks so strange that they named this phenomenon an “.”

Quantum Anomalies

For most of their history, these quantum anomalies were confined to the world of elementary particle physics explored in huge accelerator laboratories such as Large Hadron Collider at CERN in Switzerland. Now however, a new type of materials, the so-called Weyl semimetals, similar to 3-D graphene, allow us to put the symmetry destructing quantum anomaly to work in everyday phenomena, such as the creation of electric current.

In these exotic materials electrons effectively behave in the very same way as the elementary particles studied in high energy accelerators. These particles have the strange property that they cannot be at rest—they have to move with a constant speed at all times. They also have another property called spin. It is like a tiny magnet attached to the particles and they come in two species. The spin can either point in the direction of motion or in the opposite direction.

Scientists Observe Gravitational Anomaly on Earth
An international team of scientists have verified a fundamental effect in a crystal that had been previously only thought to be observable in the deep universe. The experiments have verified a quantum anomaly that had been experimentally elusive before. The results are appearing in the journal Nature. Image Source: Robert Strasser, Kees Scherer; collage: Michael Büker

When one speaks of right- and left-handed particles this property is called chirality. Normally the two different species of , identical except for their chirality (handedness), would come with separate symmetries attached to them and their numbers would be separately conserved. However, a quantum anomaly can destroy their peaceful coexistence and changes a left-handed particle into a right-handed one or vice-versa.

Appearing in a paper published today in Nature, an international team of physicists, material scientists and string theoreticians, have observed such a material, an effect of a most exotic quantum anomaly that hitherto was thought to be triggered only by the curvature of space-time as described by Einstein’s theory of relativity. But to the surprise of the team, they discovered it also exists on Earth in the properties of , which much of the computing industry is based on, spanning from tiny transistors to cloud data centers.

“For the first time, we have experimentally observed this fundamental quantum anomaly on Earth which is extremely important towards our understanding of the universe,” said Dr. Johannes Gooth, an IBM Research scientist and lead author of the paper. “We can now build novel solid-state devices based on this anomaly that have never been considered before to potentially circumvent some of the problems inherent in classical electronic devices, such as transistors.”

New calculations, using in part the methods of string theory, showed that this gravitational anomaly is also responsible for producing a current if the material is heated up at the same time a magnetic field is applied.

“This is an incredibly exciting discovery. We can clearly conclude that the same breaking of symmetry can be observed in any physical system, whether it occurred at the beginning of the universe or is happening today, right here on Earth,” said Prof. Dr. Karl Landsteiner, a string theorist at the Instituto de Fisica Teorica UAM/CSIC and co-author of the paper.

IBM scientists predict this discovery will open up a rush of new developments around sensors, switches and thermoelectric coolers or energy-harvesting devices, for improved power consumption.

This article was provided by IBM Research. Materials may have been edited for clarity and brevity. 

The post Scientists Observe Gravitational Anomaly on Earth appeared first on Futurism.

New Breakthrough Discovery—Every Quantum Particle Travels Backwards

Quantum Mechanical Particles

Mathematicians at the Universities of York, Munich and Cardiff have identified a unique property of quantum mechanical particles – they can move in the opposite way to the direction in which they are being pushed.

New Breakthrough Discovery—Every Quantum Particle Travels Backwards
Image Source: Varsha Y S / WIkimedia Commons

In everyday life, objects travel in the same direction as their momentum – a car in forward motion is going forwards, and certainly not backwards.

However, this is no longer true on microscopic scales –   can partially go into reverse and travel in the direction opposite to their momentum. This unique property is known as ‘backflow’.

New Discovery

This is the first time this has been found in a particle where external forces are acting on it. Previously, scientists were only aware of this movement in “free” quantum particles, where no  is acting on them.

Using a combination of analytical and numerical methods, researchers also obtained precise estimates about the strength of this phenomenon. Such results demonstrate that backflow is always there but is a rather small effect, which may explain why it has not been measured yet.

This discovery paves the way for further research into , and could be applied to future experiments in quantum technology fields such as computer encryption.

Unique to Quantum Particles

Dr Henning Bostelmann, Researcher in York’s Department of Mathematics, said: “This new theoretical analysis into quantum mechanical particles shows that this ‘backflow’ effect is ubiquitous in quantum physics.

“We have shown that backflow can always occur, even if a force is acting on the quantum particle while it travels. The backflow effect is the result of wave-particle duality and the probabilistic nature of quantum mechanics, and it is already well understood in an idealised case of force-free motion.”

Dr Gandalf Lechner, Researcher in Cardiff’s University’s School of Mathematics, said: “Forces can of course make a particle go backwards – that is, they can reflect it, and this naturally leads to increased backflow. But we could show that even in a completely reflection-free medium, backflow occurs. In the presence of reflection, on the other hand, we found that backflow remains a , and estimated its magnitude.”

External Forces

Dr Daniela Cadamuro, Researcher at the Technical University of Munich, said: “The backflow effect in quantum mechanics has been known for quite a while, but it has always been discussed in regards to ‘free’ quantum particles, i.e., no external forces are acting on the particle.

“As ‘free’  are an idealised, perhaps unrealistic situation, we have shown that backflow still occurs when external forces are present. This means that external forces don’t destroy the backflow effect, which is an exciting .”

“These new findings allow us to find out the optimal configuration of a quantum particle that exhibits the maximal amount of backflow, which is important for future experimental verification.”

This article was provided by University of York. Materials may have been edited for clarity and brevity. And make the name of the source a link back to their website.

The post New Breakthrough Discovery—Every Quantum Particle Travels Backwards appeared first on Futurism.

A Quantum Principle Could Change Wireless Charging Technology Forever

A Better Range

While wireless charging is an improvement over a mess of entangled wires, the technology does not solve the issue of mobility — your phone still needs to remain in one place to charge. This could change with the development of a new type of charging.

Things to Come: A Timeline of Future Technology [INFOGRAPHIC]
Click to View Full Infographic

Current wireless charging devices operate using an electromagnetic field. For the power transfer between the charger and the device to remain optimal, the distance between the two must remain fixed. However, a team out of Stanford has created a charger that can transfer power to moving devices up to a meter away. Their research has been published in Nature.

The system uses a quantum mechanical principle called parity-time symmetry. Essentially, this means their charger can automatically adjust its power flow depending on the situation. The researchers demonstrated their device using an LED bulb. When the bulb moved further away, the distance was mitigated by the charger. This allowed the bulb to retain its brightness despite the motion.

Power Everywhere

Though this study only demonstrates the technology at a minor level, if scalable, it could essentially enable us to charge devices at the optimum rate despite a varying distance. This has exciting applications in a number of fields beyond just allowing you to comfortably use your phone while charging it.

Theoretically, it could revolutionize our ability to wirelessly charge electric vehicles as charging devices could be built into roads to charge the EVs as they drive past. The study also cites the potential to charge medical implants more efficiently. These devices are all implanted at slightly different depths, which can make charging them using existing technology complicated. This new technology would give patients the ability to move around while charging, as well.

While the team’s technology is still in its nascent stages and has only charged a single moving LED so far, the concept has the potential to radically change how we power our lives in the future. Now, it’s just a matter of scaling it up.

The post A Quantum Principle Could Change Wireless Charging Technology Forever appeared first on Futurism.

New Explanation for Dark Energy? Tiny Fluctuations of Time and Space.

Since the late 1920s, astronomers have been aware of the fact that the Universe is in a state of expansion. Initially predicted by Einstein’s Theory of General Relativity, this realization has gone on to inform the most widely-accepted cosmological model — the Big Bang Theory. However, things became somewhat confusing during the 1990s, when improved observations showed that the Universe’s rate of expansion has been accelerating for billions of years.

This led to the theory of dark energy, a mysterious invisible force that is driving the expansion of the cosmos. Much like dark matter which explained the “missing mass,” it then became necessary to find this elusive energy, or at least provide a coherent theoretical framework for it. A new study from the University of British Columbia (UBC) seeks to do just that by postulating the Universe is expanding due to fluctuations in space and time.

The study — which was recently published in the journal Physical Review D – was led by Qingdi Wang, a PhD student with the Department of Physics and Astronomy at UBC. Under the supervisions of UBC Professor William Unruh (the man who proposed the Unruh Effect) and with assistance from Zhen Zhu (another PhD student at UBC), they provide a new take on dark energy.

Diagram showing the Lambda-CBR universe, from the Big Bang to the the current era. Image Credit: Alex Mittelmann/Coldcreation

The team began by addressing the inconsistencies arising out of the two main theories that together explain all natural phenomena in the Universe. These theories are none other than general relativity and quantum mechanics, which effectively explain how the Universe behaves on the largest of scales (i.e. stars, galaxies, clusters) and the smallest (subatomic particles).

Unfortunately, these two theories are not consistent when it comes to a little matter known as gravity, which scientists are still unable to explain in terms of quantum mechanics. The existence of dark energy and the expansion of the Universe are another point of disagreement. For starters, candidates theories like vacuum energy — which is one of the most popular explanations for dark energy — present serious incongruities.

According to quantum mechanics, vacuum energy would have an incredibly large energy density to it. But if this is true, then general relativity predicts that this energy would have an incredibly strong gravitational effect, one which would be powerful enough to cause the Universe to explode in size. As Prof. Unruh shared with Universe Today via email:

The problem is that any naive calculation of the vacuum energy gives huge values. If one assumes that there is some sort of cutoff so one cannot get energy densities much greater than the Planck energy density (or about 1095 Joules/meter³)  then one finds that one gets a Hubble constant — the time scale on which the Universe roughly doubles in size — of the order of 10-44 sec. So, the usual approach is to say that somehow something reduces that down so that one gets the actual expansion rate of about 10 billion years instead. But that ‘somehow’ is pretty mysterious and no one has come up with an even half convincing mechanism.

New Explanation for Dark Energy? Tiny Fluctuations of Time and Space.
Timeline of the Big Bang and the expansion of the Universe. Image Credit: NASA

Whereas other scientists have sought to modify the theories of general relativity and quantum mechanics in order to resolve these inconsistencies, Wang and his colleagues sought a different approach. As Wang explained to Universe Today via email:

Previous studies are either trying to modify quantum mechanics in some way to make vacuum energy small or trying to modify General Relativity in some way to make gravity numb for vacuum energy. However, quantum mechanics and General Relativity are the two most successful theories that explain how our Universe works… Instead of trying to modify quantum mechanics or General Relativity, we believe that we should first understand them better. We takes the large vacuum energy density predicted by quantum mechanics seriously and just let them gravitate according to General Relativity without modifying either of them.

For the sake of their study, Wang and his colleagues performed new sets of calculations on vacuum energy that took its predicted high energy density into account. They then considered the possibility that on the tiniest of scales — billions of times smaller than electrons — the fabric of spacetime is subject to wild fluctuations, oscillating at every point between expansion and contraction.

New Explanation for Dark Energy? Tiny Fluctuations of Time and Space.
Could fluctuations at the tiniest levels of space time explain Dark Energy and the expansion of the cosmos? Image Credit: University of Washington

As it swings back and forth, the result of these oscillations is a net effect where the Universe expands slowly, but at an accelerating rate. After performing their calculations, they noted that such an explanation was consistent with both the existence of quantum vacuum energy density and general relativity. On top of that, it is also consistent with what scientists have been observing in our Universe for almost a century. As Unruh described it:

Our calculations showed that one could consistently regard [that] the Universe on the tiniest scales is actually expanding and contracting at an absurdly fast rate; but that on a large scale, because of an averaging over those tiny scales, physics would not notice that ‘quantum foam.’ It has a tiny residual effect in giving an effective cosmological constant (dark energy type effect). In some ways it is like waves on the ocean which travel as if the ocean were perfectly smooth but really we know that there is this incredible dance of the atoms that make up the water, and waves average over those fluctuations, and act as if the surface was smooth.

In contrast to conflicting theories of a Universe where the various forces that govern it cannot be resolved and must cancel each other out, Wang and his colleagues presents a picture where the Universe is constantly in motion. In this scenario, the effects of vacuum energy are actually self-cancelling, and also give rise to the expansion and acceleration we have been observing all this time.

While it may be too soon to tell, this image of a Universe that is highly-dynamic (even on the tiniest scales) could revolutionize our understanding of spacetime. At the very least, these theoretical findings are sure to stimulate debate within the scientific community, as well as experiments designed to offer direct evidence. And that, as we know, is the only way we can advance our understanding of this thing known as the Universe.

The post New Explanation for Dark Energy? Tiny Fluctuations of Time and Space. appeared first on Futurism.

Watch a Simple Experiment Make Sense of Quantum Mechanics

“No One Understands Quantum Mechanics”

Quantum mechanics: a branch of physics that is, to many, confusing and misunderstood. It encompasses and deals with the actions and interactions between energy and both subatomic particles and atoms. In other words: how nature operates on an extremely small scale. Quantum mechanics helps us understand both how life works on Earth and beyond. How everything from light to the molecules that make up human beings function and interact.

So, can one simple experiment explain quantum mechanics? Perhaps. Veritasium, on YouTube, has created a video that they think can really show people what quantum mechanics is. The video description aptly quotes Richard Feynman, famed theoretical physicist, in saying, “I think I can safely say that no one understands quantum mechanics.” While understanding how it works is perhaps a little more than a single video can take on, the demonstration at least gives viewers a better idea of what quantum mechanics is.

The experiment involves placing silicone oil drops onto a vibrating bath. While the droplets are obviously too big to be considered part of a quantum system, this strange experiment visualizes pilot wave theory which says that particles oscillate, producing waves, and this interaction creates the particle’s motion. This theory tries to explain the weird — and often contradictory — behaviors of particles. This explanation can be better understood by watching the silicon drops create waves and interact with them in the video above. With something as difficult to grasp as quantum mechanics, it’s often helpful when you can actually see what it is you’re talking — or theorizing — about.

The post Watch a Simple Experiment Make Sense of Quantum Mechanics appeared first on Futurism.

Physics: A Perfect Clone is Impossible

No Cloning in Physics

Cloning used to be a science fiction staple until along came Dolly the sheep in 1996. However, cloning in biology isn’t the same thing as cloning in physics. As difficult as biological cloning is, cloning in physics is much harder. In fact, it has been proven to be impossible.

A video from YouTube’s MinutePhysics goes into quantum detail to explain just why perfect copies are not possible.

As the host explains, it’s been mathematically proven that while we may be able to make copies of objects, we can never make a perfect clone that is identical on the quantum level. The math to explain it is highly complicated — as is anything to do with quantum mechanics.

The video simplifies those complex mathematics (to a degree) by considering Schrodinger’s cat. The crux of the math deals with a concept in quantum mechanics called superposition. This is the concept that is explored in the Schrodinger thought experiment. Simplified, it deals with a cat in a box with exploded or unexploded gunpowder (or poison, depending on the telling). Without observing the inside of the box and therefore knowing whether the cat is dead (the gunpowder exploded) or alive (the gunpowder is intact) the cat exists in a superposition where it is both dead and alive.

Watch the MinutePhysics video to treat your brain to the superposition of being exploded and enlightened.

The post Physics: A Perfect Clone is Impossible appeared first on Futurism.

Scientists Achieve Direct Counterfactual Quantum Communication For The First Time

Counterfactual Communication

Quantum communication is a strange beast, but one of the weirdest proposed forms of it is called counterfactual communication – a type of quantum communication where no particles travel between two recipients.

Theoretical physicists have long proposed that such a form of communication would be possible, but now, for the first time, researchers have been able to experimentally achieve it – transferring a black and white bitmap image from one location to another without sending any physical particles.

If that sounds a little too out-there for you, don’t worry, this is quantum mechanics, after all. It’s meant to be complicated. But once you break it down, counterfactual quantum communication actually isn’t as bizarre as it sounds.

First up, let’s talk about how this differs from regular quantum communication, also known as quantum teleportation because isn’t that also a form of particle-less information transfer?

Well, not quite. Regular quantum teleportation is based on the principle of entanglement – two particles that become inextricably linked so that whatever happens to one will automatically affect the other, no matter how far apart they are.

This is what Einstein referred to as “spooky action at a distance“, and scientists have already used it to send messages over vast distances.

But that form of quantum teleportation still relies on particle transmission in some form or another. The two particles usually need to be together when they’re entangled before being sent to the people on either end of the message (so, they start in one place, and need to be transmitted to another before communication can occur between them).

Enter Zeno

Alternatively, particles can be entangled at a distance, but it usually requires another particle, such as photons (particles of light), to travel between the two.

Direct counterfactual quantum communication, on the other hand, relies on something other than quantum entanglement. Instead, it uses a phenomenon called the quantum Zeno effect.

Very simply, the quantum Zeno effect occurs when an unstable quantum system is repeatedly measured.

In the quantum world, whenever you look at a system, or measure it, the system changes. And in this case, unstable particles can never decay while they’re being measured (just like the proverbial watched kettle that will never boil), so the quantum Zeno effect creates a system that’s effectively frozen with a very high probability.

If you want to delve a little deeper, the video below gives a great explanation:

Counterfactual quantum communication is based on this quantum Zeno effect, and is defined as the transfer of a quantum state from one site to another without any quantum or classical particle being transmitted between them.

This requires a quantum channel to run between two sites, which means there’s always a small probability that a quantum particle will cross the channel. If that happens, the system is discarded and a new one is set up.

To set up such a complex system, researchers from the University of Science and Technology of China placed two single-photon detectors in the output ports of the last of an array of beam splitters.

Because of the quantum Zeno effect, the system is frozen in a certain state, so it’s possible to predict which of the detectors would ‘click’ whenever photons passed through. A series of nested interferometers measure the state of the system to make sure it doesn’t change.

It works based on the fact that, in the quantum world, all light particles can be fully described by wave functions, rather than as particles. So by embedding messages in light the researchers were able to transmit this message without ever directly sending a particle.

The Answer in Light

The team explains that the basic idea for this set up came from holography technology.

“In the 1940s, a new imaging technique – holography – was developed to record not only light intensity but also the phase of light,” the researchers write in the journal Proceedings of the National Academy of Sciences.

“One may then pose the question: Can the phase of light itself be used for imaging? The answer is yes.”

The basic idea is this – someone wants to send an image to Alice using only light (which acts as a wave, not a particle, in the quantum realm).

Alice transfers a single photon to the nested interferometer, where it can be detected by three single-photon detectors: D0, D1, and Df.

If D0 or D1 ‘click’, Alice can conclude a logic result of one or zero. If Df clicks, the result is considered inconclusive.

As Christopher Packham explains for Phys.org:

“After the communication of all bits, the researchers were able to reassemble the image – a monochrome bitmap of a Chinese knot. Black pixels were defined as logic 0, while white pixels were defined as logic 1 …

In the experiment, the phase of light itself became the carrier of information, and the intensity of the light was irrelevant to the experiment.”

Not only is this a big step forward for quantum communication, the team explains it’s technology that could also be used for imaging sensitive ancient artefacts that couldn’t surprise direct light shined on them.

The results will now need to be verified by external researchers to make sure what the researchers saw was a true example of counterfactual quantum communication.

Either way, it’s a pretty cool demonstration of just how bizarre and unexplored the quantum world is.

The research has been published in the journal Proceedings of the National Academy of Sciences.

The post Scientists Achieve Direct Counterfactual Quantum Communication For The First Time appeared first on Futurism.

Scientists Are Exploring a Link Between Our Minds and the Quantum World

Could Quantum Consciousness Exist?

Despite all the research we’ve done, we still know relatively little about how the human brain works, and we know even less about the mystery of “consciousness.” Scientists disagree about whether consciousness exists at all outside the illusions of our own collective imagination. Some believe it exists independently although we’ve yet to understand its origins have brought quantum physics into the discussion.

This is probably in part because of the way that the “observer effect” challenged one of science’s most basic tenets: that there is an objective, observable reality that exists whether we’re looking at it or not. The revelation that observing and measuring quantum effects changes their behavior is troubling, but it also suggests to many people that consciousness itself is part of quantum theory. Moreover, as humans creating AI that, for all its achievements still can’t master some of the things that come so easily to our own minds (at least not yet), we are bound to see a blurry reflection of ourselves in quantum computers, which promise to achieve so much more than ordinary computers ever could.

However, it was the British physicist Roger Penrose who pointed out that, observer effect aside, quantum mechanics may be involved in consciousness. More specifically, he thought it might be possible that quantum events cause molecular structures in the brain to alter their state and trigger neurons in different ways; that literal quantum effects within the brain exist. 

Reprogramming the Human Mind: Here’s How We’ll Make Humanity 2.0 [INFOGRAPHIC]
Click to View Full Infographic

For all we can accomplish with the human brain, it has its foibles, and perhaps suspecting the existence of quantum consciousness is one of them. We possess superior intellects because of our high-level pattern processing abilities, but it is also a well-proven fact that the human brain is prone to see meaningful patterns where none exist; in the midst of meaningless noise. And while the study of quantum physics is certainly not meaningless noise, it’s possible that our minds — which are meaning making machines — are wrong to see themselves in quantum effects. Does it really make sense to think that our lack of understanding of both consciousness and quantum mechanics points to a larger connection?

Our Participatory Universe

There is more to this question than the raw interest of philosophy: if there is in fact a connection between quantum mechanics and human consciousness, any major breakthrough in our understanding of either could help us understand both. For example, advances in quantum computing could enable us to master brain augmentation and uploading consciousness, opening the door to a form of immortality. Improved understanding of the superposition property could teach us how to conquer multiple mutually-exclusive ideas at once.

Or, perhaps we’ve been approaching this in the wrong way. As we look at quantum mechanics, we ask ourselves whether we disturb the effects by measuring, or whether it is the act of noticing the measurement impacting our consciousness that causes the disturbance. Is it possible that knowing how to think in the right way—achieving a quantum consciousness—will allow us to perceive quantum mechanics properly for the first time? We’ve always been part of Wheeler’s participatory universe in some sense, lending our interpretation to what reality is as we record our own history.

For now, most of the scientific community regards quantum effects in the brain skeptically—an appropriate response at this point. Fueling the fast retreat from any quantum consciousness theories in the scientific community is the New Age quantum consciousness trend and the cottage industry arising from it with plenty of avid bloggers writing about things like telepathy, the afterlife, and telekinesis, and crafters selling art and other products.

Whether or not consciousness influences quantum mechanics, and whether or not we eventually require quantum theory to fully comprehend how the brain works, for now we can enjoy the useful discomfort the association provides. Quantum theory has forced us out of our collective comfort zone as we consider new ways of thinking, and found ourselves living inside our own theories.

The post Scientists Are Exploring a Link Between Our Minds and the Quantum World appeared first on Futurism.

Quantum Physics is Bringing Our Wildest Sci-Fi Dreams to Life

Spooky Subatomic Space

Think of every amazing future technology you’ve seen or read about in science fiction, or imagined yourself. Big innovations that change the world and cure disease or end war, and littler ones too, things that help us “think” a quick message to a friend without saying a word or share an experience from a distance. Quantum physics is enabling the creation of all of these futuristic technologies and some that didn’t even occur to most of us, making our sci-fi dreams part of our reality.

Scientists are now able to isolate and work with single atoms and photons, and this has opened up a world of possibility, ripe for use at grander scales. The race to miniaturize computer components has all but ended, because at tiny enough sizes, particles and solids exhibit Einstein’s “spooky” behaviors and act in strange ways. Quantum technologies accept these realities, and embrace the spooky, harnessing those behaviors for use and scaling them up. There are applications for these technologies in almost every industry existing today—and new industries born out of the tremendous power of this technology are also sure to come.

A Brief History Of Atomic Theory [Infographic]
Click to View Full Infographic

Quantum mechanics has always been known for its spookiness, because it turns everything we perceive about how the universe works on its head. Cause and effect, here or there, the inevitable sequential nature of time—all of these things that simply “feel” instinctively accurate to us as we muddle through the world are challenged by quantum mechanics. The idea that a particle is here and there until I pin it down, and that my act of measurement changes the result—these are difficult ideas to live with. Add to all this the strange linking between particles, no matter how far apart, that means acting on one changes the other instantaneously, and it’s easy to feel that “entanglement” is aptly named.

Once we agree to be practical and accept the spooky spaces of quantum mechanics, though, we realize how to put them to revolutionary use. Computers that exploit entanglement and superposition can do far more than binary machines. Thanks to quantum mechanics, we are about to do the previously impossible.

Funding the Future

Right now, quantum technologies are exploding, and not just in laboratories. European quantum physicists have made incredible discoveries, and now their engineering cousins are ready to catch up. In 2016, 3,400 scientists in the EU signed the “Quantum Manifesto,” calling for a huge, unified European push for funded, coordinated quantum-tech R&D. The European Commission responded by creating a €1 billion, 10-year-long superproject to begin in 2018: the Quantum Technology Flagship.

Thus far, possible work within the project has touched on the obvious choices, including unbreakable encryption, quantum computing, and an unhackable internet. However, new focus areas were also discussed, including quantum simulation, quantum imaging, quantum sensors, quantum clocks, and quantum algorithms and software.

Startups and blue-chip firms are also investing in quantum technologies. Facebook’s dream of a telepathic social network is definitely a quantum project. The social media giant’s recent investment into its Building 8 project signals its longterm commitment to developing physical technologies and devices.

For quantum technologists, the remaining hurdles toward devices that make use of quantum mechanics are mostly engineering challenges. As these hurdles are cleared, we can expect to see developments such as an unhackable global network and a nuclear submarine spotting sensor. A bathing cap that monitors individual neurons for the purposes of mind reading will make its debut—on a runway, in a business meeting, or maybe both. And a next generation computer that tests millions of designs for new materials simultaneously and seeks out new drugs by parsing billions of possible chemical combinations will be developed.

The only real question is where. These breakthroughs will need funding, and private industry can’t do it alone. Governments all over the world are strategically investing in quantum science and other cutting edge R&D, because the free market doesn’t always make pure scientific work possible. In this new atmosphere of extreme austerity towards anything related to science and technology, it is difficult to see how these amazing innovations will continue to happen in the U.S. over time.

The post Quantum Physics is Bringing Our Wildest Sci-Fi Dreams to Life appeared first on Futurism.

Physicists Have Uncovered a Weird Problem While Measuring Time

An Ideal Time

Time is a tricky thing in physics, especially when it comes to measurement. And clocks may not solve this problem in the way we once thought they did, researchers are now saying.

A clock here doesn’t mean, simply, the one hanging in your room, but a physics concept. Yes, physics clocks are instruments that measure time, but time as points that can be measured at nearby points in space with infinite accuracy. In short, physics has told us that clocks aren’t affected by space and time — they tick along at a consistent rhythm and measure the same amount of time thanks to a principle called “time translation invariance.”

Image credit: PhotopinCredit: Photopin

However, theoretical physicists from the University of Vienna and the Austrian Academy of Sciences demonstrated a fundamental flaw in our ability to measure time. In a study published in the journal Proceedings of the National Academy of Sciences (PNAS), the researchers arrived at this conclusion by studying the interplay of Quantum Mechanics and Einstein’s theory of General Relativity.

“We find that there exist fundamental limitations to the joint measurability of time along neighboring spacetime trajectories,” the three authors wrote in the study.

Blurred Times

In quantum mechanics, Heisenberg’s uncertainty principle assumes that there’s a limit to the precision with which two physical properties — the energy and time of a clock — can be known. On the other hand, there is general relativity’s “gravitational time dilation” effect, which describes how the flow of time can be changed by the presence of masses or source of energy.

“However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, [that there is an ideal clock to each world line] is, at most, a convenient fiction,” the researchers wrote.

In short, the larger the uncertainty of energy, the greater the uncertainty of time. The researchers showed that clocks placed next to one another creates a “blurred” flow of time.

This limitation, supposedly, is a universal one that’s not affected by the underlying mechanisms of clocks nor the material they’re made from. The research points out the importance of having a more accurate clocks that measure time, as these are crucial for modern technologies — for instance, in GPS devices, which we use on a regular basis.

The post Physicists Have Uncovered a Weird Problem While Measuring Time appeared first on Futurism.

Brand New Math May Explain Strange Phenomena in Space-Time

Of Patterns and Disturbances

Mathematicians from the University of Utah have developed a new mathematical theory that could explain how waves and other disturbances in the universe move through materials in varying conditions of space and time. They call it the field pattern theory, referring to characteristic patterns that cover how disturbances react to changing conditions. “When you open the doors to a new area, you don’t know where it will go,” said Graeme Milton, first author of the study published in the journal Proceedings of the Royal Society A.

Disturbances occur fairly regularly in the fabric of space-time that makes up the universe. The recently confirmed existence of gravitational waves from Einstein’s Theory of Relativity shows that these disturbances can permeate through both space and time. But what we don’t yet fully understand is how this happens, especially because space-time is continuously shifting. This is what field patterns explain.

Obviously, we first need to understand what field patterns are. According to a press release from the University of Utah, there are two analogies to explain them; the first being a chessboard analogy. The black and white squares represent two distinct materials with different properties. The horizontal dimension represents space, while the vertical dimension represents time. A disturbance like a pulse of laser light moves through this board, forward in time and expanding in space, meeting boundaries between materials.

Field patterns describe the propagation of this pulse, which the authors tested and observed using computer simulations. Secondary author Ornella Mattei prefers a tree analogy, where the root is the initial point of disturbance. As time progresses, a disturbance moves up the tree, splitting and branches out as it encounters boundaries — which could be space, time, or the changing condition of materials.

Understanding Particles and Waves

“The idea of a field pattern is a little like a wave in one tree but a separate wave in a different tree,” Milton explained. “You can imagine in one tree there’s a wind blowing from one direction that ripples the trees one way. But the other tree, with its own separate sets of leaves, as if the wind is coming from a different direction.” Mattei added: “When you look at the field pattern after a sufficiently large period of time, you see that it’s basically periodic.”

Image credits: Ornella Mattei
Image Credit: Ornella Matte

This new mathematical model is still being tested for potential applications. But, as far as

CLICK TO VIEW FULL INFOGRAPHIC

the authors are concerned, there is one obvious application: quantum mechanics; where particles and waves literally blur. Field patterns could answer some of the biggest questions in this field.

According to Milton, this model could shed light on the nature of matter’s fundamental components. One idea is that even the smallest fluctuations in space and time could give rise to field patterns that manifest as electrons and protons. “What we see as electrons, protons or quantum mechanical waves are manifestations of the fundamental super microscopic scale of these field patterns,” he said.

Obviously, the initial paper is just a first step. “Something may pop up from this,” said Milton. “What’s really fundamental, though, is going in a completely new direction.”

The post Brand New Math May Explain Strange Phenomena in Space-Time appeared first on Futurism.

Physicists Just Showed That Quantum Entanglement Is a Physical Reality

Of Subatomic Particles

The quantum world is full of strange phenomena – phenomena which our understanding of physics can’t make sense of. This is why the quantum word has its own set of rules called quantum mechanics. One such phenomenon, which Albert Einstein once called “spooky action at a distance” is quantum entanglement. Though it seems like something straight out of science fiction, entanglement is real and can even be observed.

However, 50 years ago, physicist John Bell suggested there must be an upper limit (or Bell’s inequality) to the degree to which measurements on each member of the pair of particles could be correlated – as every particle in the universe has its own definite measurable properties. Physicists have, however, observed correlations that exceed this upper limit, suggesting actual entanglement. Each of these tests have been subjected to “loopholes” that try to explain away these correlations.

Now, researchers from the MIT, the University of Vienna, and elsewhere are working to close one these loopholes. The freedom-of-choice loophole, which suggests that human factors — an experimenter’s lab setup, choice of particles to entangle, measurements they choose to focus on, etc. — end up highlighting certain variables that display quantum entanglement when they aren’t actually present.

“The real estate left over for the skeptics of quantum mechanics has shrunk considerably,” said researcher David Kaiser, the Germeshausen Professor of the History of Science and professor of physics at MIT. “We haven’t gotten rid of it, but we’ve shrunk it down by 16 orders of magnitude.” They published their findings in the journal Physical Review Letters.

Look to the Stars

To be as random as possible, the team decided to observe ancient photons from stars as “cosmic setting generators.” They focused on stars capable of sending enough photons to their direction – the closest of which was about 600 light years away. The team installed two sources at the University of Vienna and the Austrian Academy of Sciences to receive starlight and to produce entangled photons, which they then measured.

Screen Shot 2017-02-10 at 10.07.11 AM
CLICK TO VIEW FULL INFOGRAPHIC

“We find answers consistent with quantum mechanics to an enormously strong degree, and enormously out of whack with an Einstein-like prediction,” Kaiser explained. “All previous experiments could have been subject to this weird loophole to account for the results microseconds before each experiment, versus our 600 years. So it’s a difference of a millionth of a second versus 600 years’ worth of seconds—16 orders of magnitude,” he added.

This experiment is an example of how improvements in technology help us to better observe the cosmos and understand how things work. One example of this technology is the Large Hadron Collider (LHC), the world’s largest particle accelerator that’s allowed us to understand much about the quantum world without resorting to observing stars all the time. As far as understanding quantum behavior is concerned, we need all the help we can get.

The post Physicists Just Showed That Quantum Entanglement Is a Physical Reality appeared first on Futurism.

Quantum Breakthrough: Physicists Have Once More Created Time Crystals

Out of Balance

Time crystals are strange. At the very least, they are a contradiction. A time crystal is quantum phenomenon that demonstrates movement while remaining in its ground, or lowest energy, state. Essentially a non-equilibrium form of matter, time crystals are lattices that repeat not in space but in time, breaking time-translation symmetry.

When the idea of a time crystal was proposed in 2012 by physicist and Nobel laureate Frank Wilczek, it was only a theoretical possibility that would challenge many of the laws of physics. Then, in October 2016, a team of researchers from the University of California, Santa Barbara (UCSB) managed to make a “floquet time crystal.”

Now, two separate teams of researchers from the University of Maryland and Harvard University  have reported their success at making time crystals. The teams used a time crystal “blueprint” developed by University of California, Berkeley physicist Norman Yao, which was published in the journal Physical Review Letters. In it, Yao details how to make a time crystal and measure its properties. He also predicts the various phases expected to surround a time crystal, similar to an ice’s liquid and gas phases.

A New State of Matter

The University of Maryland’s time crystal research team was led by Chris Monroe. They manage to create a time crystal using a conga line of 10 ytterbium ions with interacting electron spins — yes, similar to how qubits work in quantum computers.

To maintain this movement, the team alternately hit the ytterbium ions with one laser to create a magnetic field and a second laser to flip the spins of the atoms partially. This sequence was repeated many times, keeping the ions out of equilibrium. Due to the interaction of the spins, they settled into a stable pattern of repeated spin flipping, which is essentially what defines a crystal.

Meanwhile, the Harvard team, led by Mikhail Lukin, developed their time crystal using densely packed nitrogen vacancy centers found in diamonds.

Chris Monroe, University of Maryland
Chris Monroe, University of Maryland

“Such similar results achieved in two wildly disparate systems underscore that time crystals are a broad new phase of matter, not simply a curiosity relegated to small or narrowly specific systems,” wrote Phil Richerme of Indiana University in an article accompanying the research published in Physical Review Letters. “Observation of the discrete time crystal … confirms that symmetry breaking can occur in essentially all natural realms, and clears the way to several new avenues of research.”

This research could help us better understand quantum properties and solve the problem of quantum memory associated with quantum computing. But aside from this, Yao isn’t quite sure what else a time crystal could be used for. “This is a new phase of matter, period, but it is also really cool because it is one of the first examples of non-equilibrium matter,” Yao explained. “For the last half-century, we have been exploring equilibrium matter, like metals and insulators. We are just now starting to explore a whole new landscape of non-equilibrium matter.”

The post Quantum Breakthrough: Physicists Have Once More Created Time Crystals appeared first on Futurism.

Here’s How Quantum Gravity Will Change Our Understanding of the Universe

Quantum Mechanics vs. General Relativity

There are two theories that have essentially revolutionized our understanding of physics in the 20th century—quantum mechanics and general relativity.

Quantum mechanics attempts to explain the behavior of the smallest things in the universe—subatomic particles at the nanoscopic level. At this scale, time is universal and absolute.

On the other hand, Einstein’s general relativity posits that time is relative and dynamic—a result of how space, time, and matter interact with each other. Following the theory of relativity, the geometry of the “space-time fabric” can be distorted by large masses. Bodies that move through the distorted space-time fabric then appear as if they are being influenced by the gravitational force of the large mass.

Now, to describe and understand what we perceive in everyday life, we turn to physics. General relativity serves to explain the gravitational properties of large objects, which are massive enough that their quantum properties are negligible. Quantum mechanics accurately explains what happens on the smallest scales—but only where masses are insignificant enough that their gravitational effects are practically zilch.

The question is, how do we explain matter that is, at once, very heavy and yet very small? To that end, how will you reconcile the absolute and relative notions of time supported by each theory?

Image Credit: Olena Shmahalo/Quanta Magazine

Reconciling Differences

This gap in our understanding of physics is something that theories of quantum gravity can hopefully explain. And a new breakthrough in the study of quantum gravity gives us a glimpse of how the physics of general relativity and quantum mechanics can be resolved.

“I think we now understand that space-time really is just a geometrical representation of the entanglement structure of these underlying quantum systems,” said Mark Van Raamsdonk, a theoretical physicist at the University of British Columbia.

Did you catch all that? Essentially, the idea is that the universe of our experience, together with the matter and relativistic space and time within it, arise as emergent properties from quantum bits (qubits) of information, just as the universe of a computer game arises from the digital bits of information in a computer. This is the holographic notion of the universe.

Researchers illustrate how the universe can have a fisheye space-time geometry known as “anti-de Sitter” (AdS) space. As you move away from the center, spatial increments get shorter until eventually the spatial dimension from the center extends to nothing—smacking into a boundary. This boundary has one less spatial dimension than its interior, referred to as the “bulk,” wherein is projected the holographic universe—with all its matter and energy, and wonky time that moves in dramatic ways, bending and curving with space as described in general relativity.

But the entangled qubits residing on the boundary of this AdS space progress according to the ordered, non-relativistic time natural to quantum states; like a computer program executing its commands according to the precise ticks of its internal clock, yet creating a simulated universe within which time can warp and stretch and be as weirdly relative as it wants.

Graphical depiction of anti-de Sitter (AdS) space-time. Credit: Joao Magueijo et al.
Graphical depiction of anti-de Sitter (AdS) space-time. Credit: Joao Magueijo et al.

 

So far so good. But our universe conforms to a de Sitter configuration, where space stretches the further out you look; and this presents some problems of understanding the emergent qualities of time. The boundary, in this case, appears to be the end of time; somehow, the qubits on the boundary of the de Sitter space give rise to an interior hologram with dynamical time.

As Brian Swingle of Harvard University notes, what all this research seems to uncover is that, “somehow, you can emerge time from timeless degrees of freedom using entanglement.”

And while the team behind the study has yet to discover how this is possible, they hope it will lead to answers about what we don’t yet understand about the physics of our universe.

 

The post Here’s How Quantum Gravity Will Change Our Understanding of the Universe appeared first on Futurism.