Category: life on mars

Life Can Survive on Mars Far, Far Longer Than We Thought

Mars is not exactly a friendly place for life as we know it. While temperatures at the equator can reach as high as a balmy 35 °C (95 °F) in the summer at midday, the average temperature on the surface is -63 °C (-82 °F), and can reach as low as -143 °C (-226 °F) during winter in the polar regions. Its atmospheric pressure is about one-half of one percent of Earth’s, and the surface is exposed to a considerable amount of radiation.

Until now, no one was certain if microorganisms could survive in this extreme environment. But thanks to a new study by a team of researchers from the Lomonosov Moscow State University (LMSU), we may now be able to place constraints on what kinds of conditions microorganisms can withstand. This study could therefore have significant implications in the hunt for life elsewhere in the Solar System, and maybe even beyond!

The study, titled “100 kGy gamma-affected microbial communities within the ancient Arctic permafrost under simulated Martian conditions“, recently appeared in the scientific journal Extremophiles. The research team, which was led by Vladimir S. Cheptsov of LMSU, included members from the Russian Academy of Sciences, St. Petersburg State Polytechnical University, the Kurchatov Institute and Ural Federal University.

Image taken by the Viking 1 orbiter in June 1976, showing Mars thin atmosphere and dusty, red surface. Credits: NASA/Viking 1

For the sake of their study, the research team hypothesized that temperature and pressure conditions would not be the mitigating factors, but rather radiation. As such, they conducted tests where microbial communities contained within simulated Martian regolith were then irradiated. The simulated regolith consisted of sedimentary rocks that contained permafrost, which were then subjected to low temperature and low pressure conditions.

As Vladimir S. Cheptsov, a post-graduate student at the Lomonosov MSU Department of Soil Biology and a co-author on the paper, explained in a LMSU press statement:

“We have studied the joint impact of a number of physical factors (gamma radiation, low pressure, low temperature) on the microbial communities within ancient Arctic permafrost. We also studied a unique nature-made object—the ancient permafrost that has not melted for about 2 million years. In a nutshell, we have conducted a simulation experiment that covered the conditions of cryo-conservation in Martian regolith. It is also important that in this paper, we studied the effect of high doses (100 kGy) of gamma radiation on prokaryotes’ vitality, while in previous studies no living prokaryotes were ever found after doses higher than 80 kGy.”

To simulate Martian conditions, the team used an original constant climate chamber, which maintained the low temperature and atmospheric pressure. They then exposed the microorganisms to varying levels of gamma radiation. What they found was that the microbial communities showed high resistance to the temperature and pressure conditions in the simulated Martian environment.

Spirit Embedded in Soft Soil on Mars
Image of Martian soils, where the Spirit mission embedded itself. Credit: NASA/JPL

However, after they began irradiating the microbes, they noticed several differences between the irradiated sample and the control sample. Whereas the total count of prokaryotic cells and the number of metabolically active bacterial cells remained consistent with control levels, the number of irradiated bacteria decreased by two orders of magnitude while the number of metabolically active cells of archaea also decreased threefold.

The team also noticed that within the exposed sample of permafrost, there was a high biodiversity of bacteria, and this bacteria underwent a significant structural change after it was irradiated. For instance, populations of actinobacteria like Arthrobacter – a common genus found in soil – were not present in the control samples, but became predominant in the bacterial communities that were exposed.

In short, these results indicated that microorganisms on Mars are more survivable than previously thought. In addition to being able to survive the cold temperatures and low atmospheric pressure, they are also capable of surviving the kinds of radiation conditions that are common on the surface. As Cheptsov explained:

“The results of the study indicate the possibility of prolonged cryo-conservation of viable microorganisms in the Martian regolith. The intensity of ionizing radiation on the surface of Mars is 0.05-0.076 Gy/year and decreases with depth. Taking into account the intensity of radiation in the Mars regolith, the data obtained makes it possible to assume that hypothetical Mars ecosystems could be conserved in an anabiotic state in the surface layer of regolith (protected from UV rays) for at least 1.3 million years, at a depth of two meters for no less than 3.3 million years, and at a depth of five meters for at least 20 million years. The data obtained can also be applied to assess the possibility of detecting viable microorganisms on other objects of the solar system and within small bodies in outer space.”

Future missions could determine the presence of past life on Mars by looking for signs of extreme bacteria. Credit: NASA.

This study was significant for multiple reasons. On the one hand, the authors were able to prove for the first time that prokaryote bacteria can survive radiation does in excess of 80 kGy – something which was previously thought to be impossible. They also demonstrated that despite its tough conditions, microorganisms could still be alive on Mars today, preserved in its permafrost and soil.

The study also demonstrates the importance of considering both extraterrestrial and cosmic factors when considering where and under what conditions living organisms can survive. Last, but not least, this study has done something no previous study has, which is define the limits of radiation resistance for microorganisms on Mars – specifically within regolith and at various depths.

This information will be invaluable for future missions to Mars and other locations in the Solar System, and perhaps even with the study of exoplanets. Knowing the kind of conditions in which life will thrive will help us to determine where to look for signs of it. And when preparing missions to other words, it will also let scientists know what locations to avoid so that contamination of indigenous ecosystems can be prevented.

The post Life Can Survive on Mars Far, Far Longer Than We Thought appeared first on Futurism.

This Martian Discovery Could Hold Clues to Origins of Life on Earth

Origins of Life

Experts have predicted for years that, at some point in the near future, we will make the first human discovery of alien life — and that life will be on Mars. At the same time, researchers have worked tirelessly in trying to pinpoint the origins of life on Earth.

Recently, scientists have discovered evidence that could be key to understanding the beginnings of life — namely, indications suggesting ancient hydrothermal deposits on the “sea-floor” of Mars. This hidden site in the Eridania region of Mars might not hold definitive answers about Martians, but could provide clues to how life evolved on our planet.

An illustration of deposits in the Eridania basin. Image Credit: NASAAn illustration of deposits in the Eridania basin. Image Credit: NASA

NASA’s Mars Reconnaissance Orbiter (MRO) observed these deposits in a basin within a southern region on Mars as MRO’s Compact Reconnaissance Spectrometer for Mars identified minerals in the deposits. Recently, an international report published in the journal Nature Communications analyzed the MRO’s observations and concluded that the deposits were most likely formed by hot water, heated by a part of Martian crust that was volcanically active a long, long time ago.

No life (microbial or otherwise) has been identified in the samples, but Paul Niles of NASA’s Johnson Space Center in Houston explained that, “Even if we never find evidence that there’s been life on Mars, this site can tell us about the type of environment where life may have begun on Earth,” he said in a press release from Jet Propulsion Laboratory. “Volcanic activity combined with standing water provided conditions that were likely similar to conditions that existed on Earth at about the same time — when early life was evolving here.”

Martian Clues

These sea-floor deposits are roughly 3.8 billion years old, and around that same time, hydrothermal conditions on the sea-floor of Earth were potentially gearing up for life to begin. Now, because Earth’s crust is still so active, there aren’t clear remnants of this origin period. But this ancient sea-floor on Mars seems to be an excellent candidate for partially simulating Earth’s origin conditions.

Where Might We Find Alien Life in Our Solar System?
Click to View Full Infographic

“This site gives us a compelling story for a deep, long-lived sea and a deep-sea hydrothermal environment,” Niles said in the press release. “It is evocative of the deep-sea hydrothermal environments on Earth, similar to environments where life might be found on other worlds — life that doesn’t need a nice atmosphere or temperate surface, but just rocks, heat, and water.”

If this discovery does provide understanding into the origins of life on Earth, we could potentially also gain insight into where to look for alien life, whether it be in our solar system or elsewhere. This is an astrobiological feat of epic proportions.

The report which analyzed this discovery states that “Ancient, deep-water hydrothermal deposits in Eridania basin represent a new category of astrobiological target on Mars,” and “Eridania seafloor deposits are not only of interest for Mars exploration, they represent a window into early Earth.”

The post This Martian Discovery Could Hold Clues to Origins of Life on Earth appeared first on Futurism.

We Shouldn’t Worry About Contaminating Mars With Earth Microbes

Search for Life

There may be no bigger question than whether we are alone in our solar system. As our spacecraft find new clues about the presence of liquid water now or in the past on Mars, the possibility of some kind of life there looks more likely. On Earth, water means life, and that’s why the exploration of Mars is guided by the idea of following the water.

But the search for life on Mars is paired with plenty of strong warnings about how we must sterilize our spacecraft to avoid contaminating our neighbor planet. How will we know what’s native Martian if we unintentionally seed the place with Earth organisms? A popular analogy points out that Europeans unknowingly brought smallpox to the New World, and they took home syphilis. Similarly, it is argued, our robotic explorations could contaminate Mars with terrestrial microorganisms.

As an astrobiologist who researches the environments of early Mars, I suggest these arguments are misleading. The current danger of contamination via unmanned robots is actually quite low. But contamination will become unavoidable once astronauts get thereNASA, other agencies and the private sectorhope to send human missions to Mars by the 2030s.

Space agencies have long prioritized preventing contamination over our hunt for life on Mars. Now is the time to reassess and update this strategy – before human beings get there and inevitably introduce Earth organisms despite our best efforts.

Microbiologists frequently collect swab samples from the floor of clean rooms during spacecraft assembly. Image Source: NASA/JPL-Caltech, CC BY

What Planetary Protection Protocols Do

Arguments calling for extra caution have permeated Mars exploration strategies and led to the creation of specific guiding policies, known as planetary protection protocols.

Strict cleaning procedures are required on our spacecraft before they’re allowed to sample regions on Mars which could be a habitat for microorganisms, either native to Mars or brought there from Earth. These areas are labeled by the planetary protection offices as “Special Regions.”

The worry is that, otherwise, terrestrial invaders could jeopardize potential Mars life. They also could confound future researchers trying to distinguish between any indigenous Martian life forms and life that arrived as contamination from Earth via today’s spacecraft.

The sad consequence of these policies is that the multi-billion-dollar Mars spacecraft programs run by space agencies in the West have not proactively looked for life on the planet since the late 1970s.

Dr. Carl Sagan poses with a model of the Viking lander in Death Valley, California. Image Source: NASA, CC BY

That’s when NASA’s Viking landers made the only attempt ever to find life on Mars (or on any planet outside Earth, for that matter). They carried out specific biological experiments looking for evidence of microbial life. Since then, that incipient biological exploration has shifted to less ambitious geological surveys that try to demonstrate only that Mars was “habitable” in the past, meaning it had conditions that could likely support life.

Even worse, if a dedicated life-seeking spacecraft ever does get to Mars, planetary protection policies will allow it to search for life everywhere on the Martian surface, except in the very places we suspect life may exist: the Special Regions. The concern is that exploration could contaminate them with terrestrial microorganisms.

Can Earth Life Make It On Mars?

Consider again the Europeans who first journeyed to the New World and back. Yes, smallpox and syphilis traveled with them, between human populations, living inside warm bodies in temperate latitudes. But that situation is irrelevant to Mars exploration. Any analogy addressing possible biological exchange between Earth and Mars must consider the absolute contrast in the planets’ environments.

A more accurate analogy would be bringing 12 Asian tropical parrots to the Venezuelan rainforest. In 10 years we may very likely have an invasion of Asian parrots in South America. But if we bring the same 12 Asian parrots to Antarctica, in 10 hours we’ll have 12 dead parrots.

We’d assume that any indigenous life on Mars should be much better adapted to Martian stresses than Earth life is, and therefore would outcompete any possible terrestrial newcomers. Microorganisms on Earth have evolved to thrive in challenging environments like salt crusts in the Atacama desert or hydrothermal vents on the deep ocean floor. In the same way, we can imagine any potential Martian biosphere would have experienced enormous evolutionary pressure during billions of years to become expert in inhabiting Mars’ today environments. The microorganisms hitchhiking on our spacecraft wouldn’t stand much of a chance against super-specialized Martians in their own territory.

So if Earth life cannot survive and, most importantly, reproduce on Mars, concerns going forward about our spacecraft contaminating Mars with terrestrial organisms are unwarranted. This would be the parrots-in-Antarctica scenario.

On the other hand, perhaps Earth microorganisms can, in fact, survive and create active microbial ecosystems on present-day Mars – the parrots-in-South America scenario. We can then presume that terrestrial microorganisms are already there, carried by any one of the dozens of spacecraft sent from Earth in the last decades, or by the natural exchange of rocks pulled out from one planet by a meteoritic impact and transported to the other.

In this case, protection protocols are overly cautious since contamination is already a fact.

Technological Reasons the Protocols Don’t Make Sense

Another argument to soften planetary protection protocols hinges on the fact that current sterilization methods don’t actually “sterilize” our spacecraft, a feat engineers still don’t know how to accomplish definitively.

The cleaning procedures we use on our robots rely on pretty much the same stresses prevailing on the Martian surface: oxidizing chemicals and radiation. They end up killing only those microorganisms with no chance of surviving on Mars anyway. So current cleaning protocols are essentially conducting an artificial selection experiment, with the result that we carry to Mars only the most hardy microorganisms. This should put into question the whole cleaning procedure.

Further, technology has advanced enough that distinguishing between Earthlings and Martians is no longer a problem. If Martian life is biochemically similar to Earth life, we could sequence genomes of any organisms located. If they don’t match anything we know is on Earth, we can surmise it’s native to Mars. Then we could add Mars’ creatures to the tree of DNA-based life we already know, probably somewhere on its lower branches. And if it is different, we would be able to identify such differences based on its building blocks.

Bacterial species Tersicoccus phoenicis is found in only two places: clean rooms in Florida and South America where spacecraft are assembled for launch. Image Source: NASA/JPL-Caltech, CC BY

Mars explorers have yet another technique to help differentiate between Earth and Mars life. The microbes we know persist in clean spacecraft assembly rooms provide an excellent control with which to monitor potential contamination. Any microorganism found in a Martian sample identical or highly similar to those present in the clean rooms would very likely indicate contamination – not indigenous life on Mars.

The Window Is Closing

On top of all these reasons, it’s pointless to split hairs about current planetary protection guidelines as applied to today’s unmanned robots since human explorers are on the horizon. People would inevitably bring microbial hitchhikers with them, because we cannot sterilize humans. Contamination risks between robotic and manned missions are simply not comparable.

Whether the microbes that fly with humans will be able to last on Mars is a separate question – though their survival is probably assured if they stay within a spacesuit or a human habitat engineered to preserve life. But no matter what, they’ll definitely be introduced to the Martian environment. Continuing to delay the astrobiological exploration of Mars now because we don’t want to contaminate the planet with microorganisms hiding in our spacecrafts isn’t logical considering astronauts (and their microbial stowaways) may arrive within two or three decades.

Prior to landing humans on Mars or bringing samples back to Earth, it makes sense to determine whether there is indigenous Martian life. What might robots or astronauts encounter there – and import to Earth? More knowledge now will increase the safety of Earth’s biosphere. After all, we still don’t know if returning samples could endanger humanity and the terrestrial biosphere. Perhaps reverse contamination should be our big concern.

The main goal of Mars exploration should be to try to find life on Mars and address the question of whether it is a separate genesis or shares a common ancestor with life on Earth. In the end, if Mars is lifeless, maybe we are alone in the universe; but if there is or was life on Mars, then there’s a zoo out there.

The post We Shouldn’t Worry About Contaminating Mars With Earth Microbes appeared first on Futurism.

This Mars Discovery Could Have Major Implications for Search for Alien Life

“Toxic Cocktail”

New research shows that our aspirations to grow potatoes on Mars may be a little premature. Results of a new study indicate that the thin Martian atmosphere and the ultraviolet radiation it allows to reach the planet’s surface interact with chemical compounds called perchlorates to create a deadly environment for bacteria.

We have known that there were perchlorates on the surface of the Red Planet since the 1970s when the Viking 1 and 2 spacecraft landed there. We’ve confirmed this with other probes since that time, and until recently that fact has actually been viewed in an encouraging light. That’s because although perchlorates — made from oxygen and chlorine — are toxic to humans, bacteria tend to thrive in their presence, using them for energy. Perchlorates also lower the point at which water melts, which offered still more hope for the existence of bacterial life on Mars.

Image Credit: NASA
Image Credit: NASA
However, this new development definitively shows that all of those factors change when there isn’t enough atmosphere to filter out ultraviolet radiation. In the study, University of Edinburgh researchers exposed Bacillus subtilis, a common bacteria, to simulated Mars conditions, including low oxygen and temperatures. Under those conditions, bacteria lived for as much as an hour. However, with the addition of ultraviolet light, entire test tubes of bacteria were sterilized within 30 seconds. Furthermore, irradiated perchlorate reacted with hydrogen peroxide and iron oxide, two other common components of Martian soil, which rendered the soil hostile to bacteria.

The Search For Life

This, however, isn’t the end of the search for life on Mars. “I can’t speak for life in the past,” co-author of the study Jennifer Wadsworth said to The Guardian. “As far as present life, it doesn’t rule it out but probably means we should look for life underground where it’s shielded from the harsh radiation environment on the surface.” The ExoMars rover will look for bacteria by digging approximately 12 feet into the ground during its 2020 mission.

It’s also possible that an extremophile bacterium could survive these conditions. The common Bacillus subtilis is no extremophile, and the Martian environment may have created its own extremophiles that are even tougher than any found on Earth. “Life can survive very extreme environments,” Wadsworth told Popular Science. “The bacterial model we tested wasn’t an extremophile so it’s not out of the question that hardier life forms would find a way to survive.”

Meanwhile, the ExoMars orbiter is on track to carry out its mission: finding biochemical signs of life on Mars, or beneath its surface. The Mars 2020 rover will also be digging deep in the search for past life. NASA is developing a lidar system for the search for life on Mars. Hopefully, with this many research irons in the fire, we’ll get some exciting answers soon.

The post This Mars Discovery Could Have Major Implications for Search for Alien Life appeared first on Futurism.

Curiosity Just Sent Back Some Mysterious Inconsistencies

The study of Mars’ surface and atmosphere has unlocked some ancient secrets. Thanks to the efforts of the Curiosity rover and other missions, scientists are now aware of the fact that water once flowed on Mars and that the planet had a denser atmosphere. They have also been able to deduce what mechanics led to this atmosphere being depleted, which turned it into the cold, desiccated environment we see there today.

At the same time though, it has led to a rather intriguing paradox. Essentially, Mars is believed to have had warm, flowing water on its surface at a time when the Sun was one-third as warm as it is today. This would require that the Martian atmosphere had ample carbon dioxide in order to keep its surface warm enough. But based on the Curiosity rover’s latest findings, this doesn’t appear to be the case.

These findings were part of an analysis of data taken by the Curiosity’s Chemistry and Mineralogy X-ray Diffraction (CheMin) instrument, which has been used to study the mineral content of drill samples in the Gale Crater. The results of this analysis were recently published in Proceedings of the National Academy of Science, where the research team indicated that no traces of carbonates were found in any samples taken from the ancient lake bed.

Simulated view of Gale Crater Lake on Mars, depicting a lake of water partially filling Mars’ Gale Crater. Credit: NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS
Simulated view of Gale Crater Lake on Mars, depicting a lake of water partially filling Mars’ Gale Crater. Credit: NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS
To break it down, evidence collected by Curiosity (and a slew of other rovers, landers and orbiters) has led scientists to conclude that roughly 3.5 billion years ago, Mars surface had lakes and flowing rivers. They have also determined, thanks to the many samples taken by Curiosity since it landed in the Gale Crater in 2011, that this geological feature was once a lake bed that gradually became filled with sedimentary deposits.

However, for Mars to have been warm enough for liquid water to exist, its atmosphere would have had to contain a certain amount of carbon dioxide – providing a sufficient Greenhouse Effect to compensate for the Sun’s diminished warmth. Since rock samples in the Gale Crater act as a geological record for what conditions were like billions of years ago, they would surely contain plenty of carbonate minerals if this were the case.

Carbonates are minerals that result from carbon dioxide combining with positively charged ions (like magnesium and iron) in water. Since these ions have been found to be in good supply in samples of Martian rock, and subsequent analysis has shown that conditions never became acidic to the point that the carbonates would have dissolved, there is no apparent reason why they wouldn’t be showing up.

Along with his team, Thomas Bristow – the principal investigator for the CheMin instrument on Curiosity – calculated what the minimum amount of atmospheric carbon dioxide would need to be, and how this would have been indicated by the levels of carbonate found in Martian rocks today. They then sorted through the years worth of the CheMin instrument’s data to see if there were any indications of these minerals.

Comparison of X-ray diffraction patterns of two different samples analyzed by Curiosity’s Chemistry and Mineralogy (CheMin) instrument. Credit: NASA/JPL-Caltech/Ames
Comparison of X-ray diffraction patterns of two different samples analyzed by Curiosity’s Chemistry and Mineralogy (CheMin) instrument. Credit: NASA/JPL-Caltech/Ames
But as he explained in a recent NASA press release, the findings simply didn’t measure up:

We’ve been particularly struck with the absence of carbonate minerals in sedimentary rock the rover has examined. It would be really hard to get liquid water even if there were a hundred times more carbon dioxide in the atmosphere than what the mineral evidence in the rock tells us.

In the end, Bristow and his team could not find even trace amounts of carbonates in the rock samples they analyzed. Even if just a few tens of millibars of carbon dioxide had been present in the atmosphere when a lake existed in the Gale Crater, it would have produced enough carbonates for Curiosity’s CheMin to detect. This latest find adds to a paradox that has been plaguing Mars researchers for years.

Basically, researchers have noted that there is a serious discrepancy between what surface features indicate about Mars’ past, and what chemical and geological evidence has to say. Not only is there plenty of evidence that the planet had a denser atmosphere in the past, more than four decades of orbital imaging (and years worth of surface data) have yielded ample geomorphological evidence that Mars once had surface water and an active hydrological cycle.

The Gale Crater – the landing location and trek of the Rover Curiosity – as it is today, imaged by the MRO. Credits: NASA/JPL, illustration, T.Reyes
The Gale Crater – the landing location and trek of the Rover Curiosity – as it is today, imaged by the MRO. Credits: NASA/JPL, illustration, T.Reyes
However, scientists are still struggling to produce models that show how the Martian climate could have maintained the types of conditions necessary for this to have been the case. The only successful model so far has been one in which the atmosphere contained a significant amount of CO2 and hydrogen. Unfortunately, an explanation for how this atmosphere could be created and sustained remains illusive.

In addition, the geological and chemical evidence for such a atmosphere existing billions of years ago has also been in short supply. In the past, surveys by orbiters were unable to find evidence of carbonate minerals on the surface of Mars. It was hoped that surface missions, like Curiosity, would be able to resolve this by taking soil and drill samples where water had been known to exist.

But as Bristow explained, his team’s study has effectively closed the door on this:

It’s been a mystery why there hasn’t been much carbonate seen from orbit. You could get out of the quandary by saying the carbonates may still be there, but we just can’t see them from orbit because they’re covered by dust, or buried, or we’re not looking in the right place. The Curiosity results bring the paradox to a focus. This is the first time we’ve checked for carbonates on the ground in a rock we know formed from sediments deposited under water.

Annotated version of the bedrock site in the Gale Crater where the Curiosity rover has taken drill samples. Credit: NASA/JPL-Caltech/MSSS
Annotated version of the bedrock site in the Gale Crater where the Curiosity rover has taken drill samples. Credit: NASA/JPL-Caltech/MSSS
There are several possible explanations for this paradox. On the one hand, some scientists have argued that the Gale Crater Lake may not have been an open body of water and was perhaps covered in ice, which was just thin enough to still allow for sediments to get in. The problem with this explanation is that if this were true, there would be discernible indications left behind – which would include deep cracks in the soft sedimentary lakebed rock.

But since these indications have not been found, scientists are left with two lines of evidence that do not match up. As Ashwin Vasavada, Curiosity’s Project Scientist, put it:

Curiosity’s traverse through streambeds, deltas, and hundreds of vertical feet of mud deposited in ancient lakes calls out for a vigorous hydrological system supplying the water and sediment to create the rocks we’re finding. Carbon dioxide, mixed with other gases like hydrogen, has been the leading candidate for the warming influence needed for such a system. This surprising result would seem to take it out of the running.

Luckily, incongruities in science are what allow for new and better theories to be developed. And as the exploration of the Martian surface continues  – which will benefit from the arrival of the ExoMars and the Mars 2020 missions in the coming years – we can expect additional evidence to emerge. Hopefully, it will help point the way towards a resolution for this paradox, and not complicate our theories even more!

The post Curiosity Just Sent Back Some Mysterious Inconsistencies appeared first on Futurism.

New Evidence Confirms That Microorganisms Can Survive on Mars

**ARTICLE NOTES** Title: New Evidence Confirms That Microorganisms Can Survive on Mars

note development and how discovery was made. Second section, expand on what this means for alien life, terraforming, etc

Bits of life

It turns out there may actually be life on Mars, but not in the way that many have hoped for. According to a year-long study by a team of astrobiologists at the University of Arkansas (UARK), microbial life could survive in the environment on Mars. The team published their study in the journal Origins of Life and Evolution of Biospheres

It was the discovery of Methane on Mars that prompted the team’s study. “On Earth, most methane is produced biologically by past or present organisms. The same could possibly be true for Mars,” according to lead author Rebecca Mickol, astrobiologist at the Arkansas Center for Space and Planetary Sciences at UARK. “Of course, there are a lot of possible alternatives to the methane on Mars and it is still considered controversial. But that just adds to the excitement.”

Rebecca Mickol
Methanogens grown in test tubes. Photo Credit: Rebecca Mickol

Methane on Earth is produced by microbes called methanogens, usually found in swamps, marshes and the guts of cattle. These simple organisms on Earth can survive without the Sun and oxygen, relying on hydrogen for energy and carbon dioxide as their main carbon source.

The team’s experiment recreated the harsh environments found on Mars and exposed test-tube grown methanogens to them. The Martian environment has extremely low atmospheric pressures, roughly six-thousandths of Earth’s surface pressure. The methanogens were contained in liquids representing what could have flown underneath Mars’ surface. The scientists found that all four species managed to survive for three to 21 days.


Surviving in Mars

NASA’s Curiosity rover has seen traces of ancient rivers, lakes, and seas that once covered Mars. And because the presence of water on Earth is so indicative of life, scientists have been exploring the possibility that life existed on Mars billions of years ago. This new study shows that it’s possible that life still exists on the Red Planet today.

“In all the environments we find here on Earth, there is some sort of microorganism in almost all of them,” said Mickol. “It’s hard to believe there aren’t other organisms out there on other planets or moons as well.”

An artist's impression of a 'wet' Mars. Credits: ESO/M. Kornmesser
An artist’s impression of a ‘wet’ Mars. Photo Credit: ESO/M. Kornmesser

The UARK team’s study is groundbreaking. Proof that alien life could indeed exist on Mars could change the way we will approach the Red Planet. With plans of bringing human life there, it will be important to search for where this microbial life could be found and how not to damage it —especially if we terraform the planet (Though, the presence of microbes could also help to terraform Mars).

If microbes on Mars are found, they would be life forms originally inhabiting Mars. Think of all that we could learn by studying them. To find out if these microbes do indeed exist on Mars, the team continues to experiment with methanogens to see if they could thrive and grow at such a low pressure.

If such microbes can live on Mars, who is to say that they aren’t present elsewhere in our galaxy and beyond? According to Mickol, “with the abundance of life on Earth, in all the different extremes of environments found here, it’s quite possible there exists life — bacteria or tiny microorganisms — somewhere else in the Universe…We’re just trying to explore that idea.”


The post New Evidence Confirms That Microorganisms Can Survive on Mars appeared first on Futurism.