Category: health

Eight “Facts” about the Human Body Debunked by Science

Fact or Fiction?

When you know a particular topic really well, you might say you know it like the back of your hand. But how well do you really know that hand? Or the rest of your body, for that matter?

People have a tendency to share misinformation that, over time, can be misconstrued as fact. The human body is no exception. If you believe that alcohol warms the body (it can’t), or that newborns can’t feel pain (they can), that’s the result of those urban legends and old wives’ tales that have been repeated so often that we don’t think to doubt their veracity.

Vaccine Myths
Click to View Full Infographic

Today, however, false facts about health and the human body spread at the speed of the internet, and the consequences can be disastrous. Something that seems as innocent as posting an article on social media can have major consequences, and we owe it to the rest of society to help the truth drown out the fiction.

Thankfully, scientific research enables us to fact check those claims. When it comes to health and the human body, sometimes, getting it right could even saves lives.

Here are eight inaccurate claims about the human body, debunked by real science.

#1: Your Fingerprints Are Completely Unique

For more than a century, fingerprints have played a major role in forensic investigations. It all started with Scottish scientist and physician Henry Faulds who, in 1888, wrote an article asserting that each person has a wholly unique set of fingerprints. Now, a single print in the wrong place can be enough for a criminal conviction. However, we have no way to conclusively prove that each of our collections of whorls, loops, and arches is unique (short of gathering the prints of every person who ever lived and comparing them).

“It’s impossible to prove that no two are the same,” Mike Silverman, a forensic science regulator in the United Kingdom, told The Telegraph. “It’s improbable, but so is winning the lottery, and people do that every week.”

There can be serious consequences if most people believe that fingerprint analysis is infallible. In 2005, Simon Cole, a criminologist at the University of California at Irvine, published a study detailing the 22 known cases of fingerprint mistakes in the history of the American legal system. He stressed the need to address this misconception lest more innocent people find themselves accused, or even convicted, of crimes they did not commit.

#2: Rolling Your Tongue Is Genetic

In 1940, geneticist Alfred Sturtevant published a paper claiming that genetics determined your ability to roll your tongue — parents who could roll their tongues were likely to have children who could as well.

Just 12 years later, geneticist Philip Matlock disproved this finding with a study of his own. When he compared 33 sets of identical twins, he found that seven of those pairs contained one twin that could roll his or her tongue but the other couldn’t. Since the genes of identical twins are the same, genes clearly weren’t the deciding factor for tongue rolling.

Still, the misconception persists 65 years after Matlock published his debunking study. And though it’s not life-threatening, that misunderstanding can cause unnecessary stress. As evolutionary biologist John McDonald told PBS, he’s received emails from children concerned that they aren’t related to their parents because they don’t share the ability.

Image Credit: Gideon Tsang / Flickr

#3: You Have Five Senses

Children often learn that they have five senses — sight, hearing, taste, touch, and smell. That’s a “fact” that originated in a work by the Greek philosopher Aristotle, written around 350 B.C.

However, you actually have more than five senses. Way more. In fact, scientists aren’t even sure just how many more — estimates range from 22 to 33. Some of those other senses include equilibrioception (sense of balance), thermoception (sense of temperature), nociception (sense of pain), and kinaesthesia (sense of movement).

While none of these additional senses include the ability to communicate with the dead, some are absolutely essential for life. For example, our sense of thirst helps our bodies maintain appropriate hydration levels, and people who lack that sense — a rare condition called adipsia — can become severely dehydrated or even die.

#4: Fingernails and Hair Continue to Grow After Death

Our bodies do lots of creepy things after we die, but they don’t keep growing our fingernails and hair. To do that, our bodies need to produce new cells — something that simply isn’t possible after death.

This morbid misconception dates back until at least 1929 when writer Erich Remarque immortalized it in his novel “All Quiet on the Western Front.” In fact, his misunderstanding is due to an optical illusion. While our nails and hair don’t continue to grow after we breathe our final breath, our skin does “shrink” as it becomes dehydrated. As the skin retracts, our nails and hair become more exposed, and, thus, they may appear to grow.

Luckily, getting this one wrong isn’t likely to cause much harm — beyond its potential to give children nightmares or exacerbate a person’s thanatophobia, of course.

Image Credit: Manhhai / Flickr

#5: You Should Never Wake a Sleepwalker

Though about 7 percent of the population will sleepwalk at some point in their lives, no one knows for sure what causes somnambulism. What to do should you encounter a slumbering pedestrian is also a source of confusion thanks to a very old misconception.

Mark Pressman, a psychologist and sleep specialist at Lankenau Hospital in Pennsylvania, told Live Science the belief that it’s dangerous to wake a sleepwalker began in ancient times when people used to think your soul left your body while you slept. Waking a sleepwalker, therefore, would doom the sleeper to a soulless existence. The supposed consequences of waking a sleepwalker have since evolved — some say you could induce a heart attack, or send the sleeper into a permanent state of insanity.

While Pressman said waking a sleepwalker won’t harm them, it might not be easy to do. Letting a sleepwalker’s journey continue uninterrupted is clearly not an option since it could have devastating consequences — sleepwalkers have been known to injure themselves or even die in their zombie-like state. The best course of action, therefore, is to simply guide a sleepwalker back to bed.

#6: Swallowed Chewing Gum Takes Seven Years to Digest

If you believe the legend, gum you swallowed in late 2010 is still in your body; your digestive tract is still working on the chewy mass. While it’s impossible to pinpoint the origin of that myth, debunking it is fairly easy.

Gum is chewy because it contains a synthetic rubber base that simply isn’t digestible. But that doesn’t mean swallowed gum can’t complete the journey through your digestive tract. As Rodger Liddle, a gastroenterologist at the Duke University School of Medicine, told Scientific American, the human body is capable of passing objects up to roughly the size of a quarter, so a single piece of gum should pose no problem.

If you were to swallow several pieces of chewing gum in a short amount of time, though, you could end up with a mass too large to pass. At that point, you may need to call on a doctor to remove it manually — in 1998, pediatric gastroenterologist David Milov published a study noting three such cases in children, and the ordeal does not seem pleasant.

#7: Most of Your Body Heat Escapes Through Your Head

This misconception isn’t nearly as old as some of the others, and it is believed to have (somewhat) scientific origins.

Health services researchers Rachel Vreeman and Aaron Carroll told The Guardian this myth most likely took root in the 1950s when the U.S. military conducted a study to determine how cold weather would affect soldiers. As legend has it, they dressed volunteers in arctic survival suits and observed how their bodies reacted to freezing-cold temperatures. The military concluded that the volunteers lost most of their heat from their heads, seeming to ignore the fact that the head was the only body part that wasn’t protected from the elements.

Two decades later, a US Army survival manual incorporated those findings, stressing the importance of covering the head when exposed to cold conditions to avoid losing “40 to 45 percent of body heat.” A myth was born.

As Vreeman and Carroll told The Guardian, no one body part has a greater impact than any other when it comes to retaining heat. A 2008 study by University of British Columbia School of Kinesiology researcher Thea Pretorius supports that estimate. In that study, eight subjects spent 45 minutes in water kept a chilly 17 degrees Celsius (62 degrees Fahrenheit). Some participants had their heads submerged, while some were in only up to their necks. Those with their heads submerged lost 11 percent more heat. Because the head accounts for about 7 percent of the body’s surface area, it doesn’t seem much more important than any other part of the body for retaining heat.

Image Credit: StockSnap / Pixabay

#8: Some People Are Double-Jointed

Chances are you’ve watched someone pull her thumb back to meet her forearm or bend his leg forward at the knee. Maybe you can do these things yourself. Either way, you know most people can’t, which perpetuates the myth that people can be double-jointed.

Ultimately, this misconception comes down to a matter of language. No one is born with extra joints, but some are born with joints that are extra flexible. This condition is called hypermobility or joint laxity, and it affects an estimated 10 to 25 percent of the population.

Hypermobility is typically caused by either abnormally shaped bones or loose ligaments, USC anatomist and vertebrate paleontologist Michael Habib told the BBC. And while it can be useful for dancers, contortionists, or stuntmen, the condition will have little impact on the rest of the population, other than giving them a cool party trick.

The post Eight “Facts” about the Human Body Debunked by Science appeared first on Futurism.

A New Calculator Tries to Tell You How Many Healthy Years of Life You Have Left

As the old saying goes, the only things certain in life are death and taxes. While death is inevitable, the quality of life you experience until death is often within an individual’s control.

This is what our team at the Goldenson Center for Actuarial Research chose to focus on by developing a rigorous measure of quality of life. How many healthy years of life do you have ahead before you become unhealthy?

Everyone understands the benefits of living a long healthy life, but this also has implications for industry and society. Medical costs, financial planning and health support services are directly related to the state of health of an individual or community.

We call this measure of quality of life “healthy life expectancy” and its complement “unhealthy life expectancy.” We define entering an unhealthy state as a severe enough state of disablement that there is no recovery, so you remain unhealthy until death.

It follows that life expectancy – a measure of the total future years an individual is expected to live – is simply the two added together.

Calculating

Imagine a healthy 60-year-old male who exercises regularly, has a healthy diet and healthy body mass index and sleeps at least eight hours a night. By our estimate, he could have an additional 13 years of healthy living compared to his unhealthy counterpart. That’s 13 more years of quality living with family and loved ones.

This is quite a startling revelation, not only because of the significant difference in healthy life expectancy between these two individuals, but also because this difference is driven by lifestyle choices within the individual’s control.

So what factors contribute to a better healthy life expectancy? Two factors that are not lifestyle-related are age and gender. All other things being equal, healthy life expectancy decreases with age. Women have a longer healthy life expectancy compared to men.

We have already seen that diet, exercise and sufficient sleep positively impact healthy life expectancy. Other positive factors that we have incorporated in our model include level of education, level of income, perception of one’s own state of health, moderate alcohol intake, not smoking and absence of Type 2 diabetes. The higher the level of education and income, the higher your healthy life expectancy. Having a positive perception of your state of health helps, too.

Try it yourself

Want to know your own estimate of healthy years ahead? We developed a free online tool that lets you calculate healthy, unhealthy and total life expectancy. This is work in progress.

This is the first time such a measurement tool has been developed. While it’s too early to validate the accuracy of our calculations with actual data, we have been careful to ensure that the model assumptions are based on established actuarial sources and the modeling results are logical and consistent.

It should be noted that healthy life expectancy is simply an educated prediction. Unforeseen incidents – like being hit by a truck – could render this estimate invalid, no matter how well you manage lifestyle habits. Also, there could be other nonmeasurable factors impacting healthy life expectancy that we have not included in our model, like level of stress, a positive attitude to life or social connections.

Putting our model to work

Our team plans to explore some of these practical applications of healthy life expectancy in industry.

For example, the concept of healthy life expectancy can help with retirement financial planning. Annual retirement spending should not be level across your life expectancy. More discretionary retirement spending should happen during healthy years and less during unhealthy years, while spending on basic expenses increases during unhealthy years.

Insurance products can be also designed using healthy life expectancy measures in mind. This can protect an individual against additional basic living expenses during the unhealthy period. One such product could be a deferred long-term care or temporary deferred life annuity, where the deferral period is for healthy life expectancy and the temporary coverage is for the unhealthy period. This can be a significantly cheaper and a more needed product compared to what is available in the marketplace currently.

Since healthy life expectancy is also related to quality of life and level of health, a relative index could compare an individual’s results against a benchmark healthy life expectancy for someone with “average” characteristics. This can then be used as an underwriting tool and to predict future health care costs. Our model could also serve as a patient screening tool for medical providers by incorporating more detailed lifestyle and dietary details as well as prior medical history information.

We hope that other researchers and practitioners will continue to build on this. Then society could focus on not just prolonging life, but prolonging quality of life using our model. As the saying goes, “In the end, it is not the years in your life that count. It’s the life in your years.”

Jeyaraj Vadiveloo, Director of the Janet and Mark L. Goldenson Center for Actuarial Research, University of Connecticut

This article was originally published on The Conversation. Read the original article.

The Conversation

The post A New Calculator Tries to Tell You How Many Healthy Years of Life You Have Left appeared first on Futurism.

A New Bio-Ink Could Be Used to 3D Print Artificial Organs

Lifesaving Gel

Patients in need of an organ transplant face a grim reality: according to the Organ Procurement and Transplantation Network, in the US alone there are over 116,000 people on the life-saving transplant waiting list. But so far, in 2017, there have only been 10,866 donors. A new innovation could change that reality by creating artificial human tissues and organs from bio-ink.

Developed by engineers at the University of British Columbia (UBC) Okanagan, bio-ink is made of cold-soluble gelatin (which can dissolve without heat), which served as a building block in hydrogel alongside living cells to mold 3D-printed tissues. The hydrogel performed better than others made of pig or fish skin, forming healthy tissue scaffolds for new cells to grow on while remaining stable at room temperature.

“A big drawback of conventional hydrogel is its thermal instability,” explained Keekyoung Kim, an assistant professor at UBC Okanagan’s School of Engineering in a press release. “Even small changes in temperature cause significant changes in its viscosity, or thickness.”

The cold-soluble gelatin is also inexpensive, allowing for a much cheaper alternative to traditional organ transplants.

3D printed models of human organs are already helping surgeons better plan for surgery, but we’ve yet to see an artificial organ transplant; a 3D printed-tibia is as close as we’ve come.

“We hope this new bio-ink will help researchers create improved artificial organs and lead to the development of better drugs, tissue engineering and regenerative therapies,” Kim said. “The next step is to investigate whether or not cold-soluble GelMA-based tissue scaffolds are can be used long-term both in the laboratory and in real-world transplants.”

With another person added to the organ transplant list roughly every ten minutes, this new method can’t come soon enough.

The post A New Bio-Ink Could Be Used to 3D Print Artificial Organs appeared first on Futurism.

When Will the First Male Contraceptive Pill Be Publicly Available?

Competition for Condoms

Setting aside the issue of cost and insurance coverage, these days there are many options for birth control — for women, that is. Since the first birth control for women went on the market in 1960, scientists have come up with a variety of pills, inserts, and implants women can choose from for contraceptive purposes. Men, on the other hand, are much more restricted in their options.

When Will the First Male Contraceptive Pill Be Publicly Available?
Image Credit: bark / Flickr

Many are calling for more options for male birth control, both as a way to both give men more control over their fertility and to lessen the burden on women to deal with the responsibility and side effects of contraceptives by themselves. However, innovation in this area has been slow, and a recent attempt was not very promising. We asked Futurism readers when we can expect a version of “the pill” for men.

Apparently, very soon. Almost 80 percent of respondents believe a birth control pill will be available for men sometime during the 2020s. Reader Alejandro Baquero-Lima wrote he thinks the 2030s might be a little more feasible to ensure any kinks in the pharmacology will be worked out. “The male body is very different to that of the female body,” Baquero-Lima wrote. “Therefore, the contraceptive will have to make sure to react accordingly. But it will be coming.”

What The Experts Have to Say

Baquero-Lima is right in that scientists have found designing contraception for men a challenge. “Men make 1,000 sperm every second,” said John Amory, a male reproductive specialist at the University of Washington (UW), Seattle, in an interview with Seeker. “It’s proven to be a lot more difficult to turn that degree of production off compared to one egg a month.”

But that hurdle hasn’t stopped researchers from pursuing potential contraceptives for men. One promising form of birth control in development, put in place by an injection, is 99 percent effective for more than 10 years after a single shot. Researchers have also recently discovered that two known compounds might act as “molecular condoms.” These projects and others in the drug-development pipeline have made Stephanie Page, professor of metabolism and endocrinology at UW, optimistic that we may see a birth control pill for men in about a decade.

“There are a number of targets that are being actively pursued: sperm motility, sperm-egg fusion, and various aspects of sperm development,” Page said in an interview with Endocrine News. “Thus, the 10-year benchmark that we have talked about for a few years now looks more promising than in the past.”

See all of the Futurism predictions and make your own predictions here.

The post When Will the First Male Contraceptive Pill Be Publicly Available? appeared first on Futurism.

Expert Argues That Gene Editing Will Widen Economic Class Gap

Designed for Disparity?

“It’s time we provided some critical scrutiny and stopped parroting the gospel of medical progress at all costs,” writes former molecular biologist Dr. David King in a recent Guardian editorial. “…we must stop this race for the first GM baby.”

King wrote in response to the announcement earlier this month that doctors had successfully altered the genomes of single-cell human embryos. Using CRISPR, the doctors removed a gene for hypertrophic cardiomyopathy (HCM), a common heart disease that can cause sudden cardiac arrest and death. Their results are described in Nature.

Seeing Double: The History of Animal Cloning
Click to View Full Infographic

King is the founder of Human Genetics Alert, an independent watchdog group opposed to certain outcomes of genetic engineering. He argues that genome editing of the type in Nature is not a justified use of medical research dollars, given the ability to avoid the birth of children with such conditions through testing.

“In fact, the medical justification for spending millions of dollars on such research is extremely thin: it would be much better spent on developing cures for people living with those conditions,” King says. He argues that inevitably, even if pioneered for medical reasons, market forces will inevitably push genome editing towards creating “designer babies,” allowing the very wealthy to program desired traits into their unborn children.

King, and others, see this application as unethical and akin to eugenics.

“Once you start creating a society in which rich people’s children get biological advantages over other children, basic notions of human equality go out the window,”  King writes. “Instead, what you get is social inequality written into DNA.”

Weighing the Risks

The advent of CRISPR technology has drastically accelerated the field of genetic engineering, and with it the fears of ethicists like King. Yet many say that these worries are overblown.

“We are still a long way from serious consideration of using gene editing to enhance traits in babies,” Janet Rossant, co-author of a report on human genome editing for the National Academy of Sciences (NAS), told the Guardian. “We don’t understand the genetic basis of many of the human traits that might be targets for enhancement.”

If this changes in the future, King argues that it will be impossible to keep the influence of money from directing how that knowledge is used. He bases this prediction of market-based inequality on existing practices — such as the high price tag of ova donated by “tall, beautiful Ivy League students” and the popularity of the international surrogacy market among those with the means to travel for a baby.

Yet existing regulatory systems may be enough to prevent the future King predicts.

In their report for NAS, Rossant and her co-authors emphasized that while caution and ethical oversight are necessary, the US Food and Drug Administration’s system for evaluating medical products could, too, assess potential uses of genome editing. The authors predict that editing for purposes of enhancement — as they put it, “not clearly intended to cure or combat disease and disability” — would not pass muster.

Additionally, King’s argument largely overlooks the potential of gene editing to help children whose conditions are unlikely to have a cure, or whose parents are unwilling to reject a pregnancy.

genetic engineering genetics health controversy
John Zhang, the doctor responsible for producing the first baby born of three parents through mitochondrial transfer, holds the newborn child. Image Credit: New Hope Fertility Center
Take, for example, the first baby born of three-parent intravenous fertilization, referenced by King as an early form of baby-designing. The parents chose this technique to avoid passing on the mother’s rare genetic disease. Three of their previous children had already died from that disease.
“It’s easy for those unaffected by genetic diseases to dismiss scientific progress as a step towards a future … [with] a design-your-own-baby catalogue,” said writer Alex Lee, who suffers from a rare mitochondrial disease that caused her to go blind, in a contrasting Guardian editorial. Lee’s disease is rare enough that it is very unlikely research dollars will go towards finding a cure, as King suggested they should.
“For people like me…scientific advancements into gene editing and mitochondrial replacement therapy offer nothing but hope.”

For Lee and many others suffering from genetic disease, even a selective regulatory establishment may spell collateral damage for the rest of their lives. But the fact stands: caution and oversight will be paramount when playing with the very means nature gave us for life.

The post Expert Argues That Gene Editing Will Widen Economic Class Gap appeared first on Futurism.

Scientists Just Successfully Edited the First Human Embryo Ever in The U.S.

A New Age in Human Evolution

By now, most of us know what CRISPR gene editing is. At the very least, we have heard of this revolutionary technology that allows us to alter DNA—the source code of life itself. One day, CRISPR could allow us to delete genes in order to eradicate genetic diseases, add in new genes in order to vastly improve various biological functions, or even genetically modify human embryos in order to create an entirely new class of humans…of super humans.

But first, we have a lot of research to do.

And that brings us to today. Reports from MIT were just released which assert that the very first attempt at creating genetically modified human embryos in the United States has been carried out by a team of researchers in Portland, Oregon.

“So far as I know this will be the first study reported in the U.S.,” Jun Wu, who played a role in the project and is a collaborator at the Salk Institute, said to MIT.

According to MIT, the work was led by Shoukhrat Mitalipov, who comes from the Oregon Health and Science University. Although details are scarce at this point, sources familiar with the work assert that the research involved changing the DNA of one-cell embryos using CRISPR gene-editing. Further, Mitalipov is believed to have broken records in two notable ways:

  1. He broke the record on the number of embryos experimented upon.
  2. He is the first researcher to ever conclusively demonstrate that it is possible to safely and efficiently correct defective genes that cause inherited diseases.

This is notable because, despite the fact that it has been around for several years now, CRISPR is still an incredibly new tool—one that could have unintended consequences. As previous work published in the journal Nature Methods revealed, CRISPR-Cas9 could lead to unintended mutations in a genome. However, the work was later reviewed by researchers at another institution and the findings were brought into question. It remains to be seen whether the original study will be corrected or retracted, but this development highlights the importance of peer review in science.

In this regard, Mitalipov’s work brings us further down the path to understanding exactly how CRISPR works in humans, and reveals that is it possible to avoid both mosaicism (changes that are taken up not by only some of the cells of an embryo, as opposed to all of them) and “off-target” effects.

A Long Road to Travel

It is important to note that none of the embryos were allowed to develop for more than a few days, and that the team never had any intention of implanting them into a womb. However, it seems that this is largely due to ongoing regulatory issues, as opposed to issues with the technology itself.

In the United States, all efforts to turn edited embryos into a baby—to bring the embryo to full term—have been blocked by Congress, which added language to the Department of Health and Human Services funding bill that forbids it from approving any such clinical trials.

How CRISPR Works: The Future of Genetic Engineering and Designer Humans
Click to View Full Infographic

Yet, the potential of the CRISPR-Cas9 system as a gene editing technology is undeniable. As previously mentioned, it has seen success in developing possible cancer treatments, in making animals disease-resistant, and it has even shown promise in replacing antibiotics altogether.

This new work adds to the promise of CRISPR, and stands as an important step toward the birth of the first genetically modified humans.

The post Scientists Just Successfully Edited the First Human Embryo Ever in The U.S. appeared first on Futurism.

Color-Changing Tattoos Could Help Millions Monitor Their Health in Real-Time

The Tattoo Test

Researchers from Massachusetts Institute of Technology (MIT) and Harvard Medical School have developed a tattoo ink that could provide real-time updates on the body’s health. By making ink that responds to interstitial fluid — the liquid in which our cells are suspended — the researchers have found a unique way to monitor blood glucose, sodium, and ph levels.

The idea of the DermalAbyss project is that an individual would have the ink tattooed onto their body in the pattern of their preference. The tattoo would then change color according to the amount of the activating agent present. A tattoo using the ink designed to respond to glucose levels, for example, would change color from blue to brown as the person’s blood sugar level rises.

A Medical Skin Interface

The technology is an ingenious interaction of the body-art, medical, and bio-sensor sectors. While the researchers have no immediate plans to release their ink to the public, the potential of the project is huge, and others could possibly explore and expand upon it in the future.

Bioprinting: How 3D Printing is Changing Medicine
Click to View Full Infographic

Aside from the initial tattooing process, the researchers’ skin interfaces are non-invasive, unlike the methods currently used to monitor diabetes. They’re also much harder to damage than current wearable technology.

That means the tech could improve millions of lives in the United States alone by helping the 10 percent of the population with diabetes more easily monitor their disease.

As stated on the project website, the technology could potentially be used to measure far more than just the levels tested in the study: “It could be used for applications in [continuous] monitoring, such as medical diagnostics, quantified self, and data encoding in the body.”

This isn’t the only research exploring innovative uses of tattoos — others have found ways to link body ink to sound files or use it to control smartphones — but this research is the first to explicitly explore the medical possibilities of inked biosensors. Though just a proof of concept right now, DermalAbyss could be offering us a glimpse into the future of health monitoring.

The post Color-Changing Tattoos Could Help Millions Monitor Their Health in Real-Time appeared first on Futurism.

Scientists Just Found a New Weapon That Can Combat Cancer: Coffee

A Dose-Dependent Cancer Cure?

Researchers from the University of Southampton and the University of Edinburgh have found that it’s possible that the more coffee you drink, the less likely you are to develop hepatocellular cancer (HCC) — the most prolific form of liver cancer. Analyzing data from 26 studies, which involved more than 2.25 million participants in total, they concluded that people who drink 1 cup of coffee per day have a 20% reduced risk, 2 cups per day reduces risk by 35%, and 3 cups per day decreased risk by 50%. These findings showed that decaffeinated coffee also affects your risk, but the team could not deduce the precise amount.

Lead author Dr. Oliver Kennedy, a member of the Primary Care and Population Sciences Faculty of Medicine at the University of Southampton, told The Guardian: “Coffee is widely believed to possess a range of health benefits, and these latest findings suggest it could have a significant effect on liver cancer risk.” Coffee has also been said to have painkilling capabilities and the potential to prevent heart attacks.

Image Credit: Cheryl Foong/Flickr
Image Credit: Cheryl Foong/Flickr

Decaf Drinkers Win Too

The main consequence of this study is that doctors may be able to use coffee to help in the prevention of liver cancer.  It’s a step that is both inexpensive and easy for people to incorporate into their daily lives, if they haven’t already. These benefits are also present in decaffeinated coffee, meaning that this means of prevention would also be accessible to those who can’t or do not drink caffeinated coffee.

The study authors wrote “It may be important for developing coffee as a lifestyle intervention in chronic liver disease, as decaffeinated coffee might be more acceptable to those who do not drink coffee or who limit their coffee consumption because of caffeine-related symptoms.”

Now, this development is not necessarily an encouragement to drown yourself in Starbucks. There are dangers in consuming too much caffeine, and much more research still needs to be done before coffee can be used medically with certainty. There is not enough existing research into the possible repercussions of consuming large quantities of caffeine over time, especially as a preventative medical measure. Hopefully in the future, preventing liver cancer will be cheap, easy, and delicious.

The post Scientists Just Found a New Weapon That Can Combat Cancer: Coffee appeared first on Futurism.

Powdered Vaccines Could Potentially Save 100,000 Children Each Year

Even with the heightened hysteria surrounding vaccines, the medical tool is something of a modern day miracle. A few shots can prevent you from contracting particular diseases, diseases which have left many people dead in their wake. While vaccines themselves are innovative, we have seen a push for a patch, inhalants, and we see one that might resemble the powder that NASA frequently called astronaut ice cream.

Rotavirus is a disease common to developing countries, leaving over 200,000 children each year dead. The disease induces diarrhea, which leads to dehydration, and consequently death. While there have been rotavirus vaccines in the past, the oral vaccine developed by scientists is changing the game completely, especially in areas where it is needed most urgently.

The Story of How Vaccines Changed the World
Click to View Full Infographic

Vaccines in sub-Saharan Africa normally need refrigeration, a difficult condition to satisfy when vaccines need to be transported hundreds of kilometers from village to village. Vaccines are active proteins and therefore do not perform at optimal temperatures if they are stored in an environment too cold or too warm. If this occurs, the vaccine’s structure may be compromised, affecting their potency. With the new BRV-PV vaccines, this is not an issue.

Vaccines without Borders

The BRV-PV vaccine can work in locations that are lacking in electricity or health clinics. The vaccine was freeze-dried by scientists at the Serum Institute of India by dipping it into liquid nitrogen and removing water with a vacuum. The dry powder residue left over is extremely durable and can be transported with ease.  For use, a health worker can dissolve the powder in salt water and put a few drops on an infant’s tongue.

While the BRV-PV has yet to be approved by World Health Organization (WHO), it is well on its way. The vaccine was first tested in 2014 with 3,500 babies in Niger. After the children received three doses of the vaccine, severe cases of rotavirus were cut down by more than two-thirds.

Using the freeze-drying method on vaccines proved to be efficient, expansive, and importantly, cost effective. In the future, widespread implementation of these methods would break global health barriers rapidly.

The post Powdered Vaccines Could Potentially Save 100,000 Children Each Year appeared first on Futurism.

A Pharmaceutical Company is Officially Using Cannabis to Treat Disease

Stokes’ Secret Ingredient

Heart disease is the leading cause of death worldwide. In the U.S. alone, about 610,000 people die from it every year – totaling one out of every four deaths. As a response to this statistic, pharmaceutical company GrowBlox Life Sciences LLC announced that they plan to develop a drug that could prevent and treat cardiovascular disease. Their main influence is from a patent that was obtained by Dr. Alexander Stokes, a research professor from the University of Hawai’i at Manoa.

Credit: University of Hawai’i at Manoa

Stokes developed a novel therapy for heart disease, and in 2015, was issued a patent. The main ingredient? Cannabis.

When asked about this original therapy and its relation to managing to heart disease, he commented:

Many types of diseases ultimately affect the heart by making it work harder. The heart muscles compensate by getting bigger. The heart becomes stiffer and less functional and eventually starts to fail. We have a way of protecting the heart with a completely new therapeutic approach – a therapy that allows the heart to compensate for the extra work it needs to perform, without losing function and failing.

The patent claims the regulation of cannabinoid receptor TRPV1 through plant-based cannabinoids, specifically marijuana. TRPV1 is majorly responsible in the progression to heart failure. The medicinal compounds in marijuana are able to bind to TRPV1, instilling their effects inside cells. With the development of a separate cannabis-based drug by the pharmaceutical company alongside Dr. Stokes therapy, they hope to reduce the number of heart disease cases. This comes with the “entourage effect,” a theory stating that some cannabis compounds are more effective when paired with other compounds, rather than used alone.

The Healing Powers of Cannabis

The CDC states that heart disease is the leading cause of death for both men and women. Chances are you know someone who has suffered from it or has experienced a heart attack. The approaches from Dr. Stokes and GrowBlox Life Sciences LLC are just two players in the medical field on a mission to solving this epidemic. But their approach brings to light a growing trend in medicine – the use of cannabis compounds in treatment and prevention.

Marijuana extract has been used in studies on diseases such as Crohn’s, Alzheimer’s, and epilepsy. In one particular study, scientists found that the cannabinoids regulated certain events implicated by Alzheimer’s. Researchers also formulated a drug utilizing cannabis compounds in treating Alzheimer’s, which helped neurons grow and connect with brain cells to increase memory formation. Their properties have even been used to treat inflammatory diseases.

While cannabis certainly isn’t a magical cure-all, it is important that scientists are free to research its affects on patients, and that doctors are able to offer patients the best treatment available – even if it is cannabis.

The post A Pharmaceutical Company is Officially Using Cannabis to Treat Disease appeared first on Futurism.